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A fiber directional position sensor based on multimode interference and image processing by machine learning
is presented. Upon single-mode injection, light in multimode fiber generates a multi-ring-shaped interference
pattern at the end facet, which is susceptible to the amplitude and direction of the fiber distortions. The fiber is
mounted on an automatic translation stage, with repeating movement in four directions. The images are captured
from an infrared camera and fed to a machine-learning program to train, validate, and test the fiber conditions. As
a result, accuracy over 97% is achieved in recognizing fiber positions in these four directions, each with 10 classes,
totaling an 8 mm span. The number of images taken for each class is merely 320. Detailed investigation reveals
that the system can achieve over 60% accuracy in recognizing positions on a 5 µm resolution with a larger dataset,
approaching the limit of the chosen translation stage. © 2020 Optical Society of America

https://doi.org/10.1364/AO.394280

1. INTRODUCTION

Recent decades have witnessed tremendous development in
the field of optical fiber sensors thanks to their extraordinary
advantages such as the ability to sense and transmit signals in the
same physical channel, immunity to electromagnetic interfer-
ence, electrical insulation, and excellent stability in harsh and
hazardous environments [1–3]. Fiber optical sensors have hence
found wide applications in the structural health monitoring
of buildings [4–6], earthquake detection [7], biosensing [8,9],
tracking of robotic movement [10–12], etc. Recently, fiber
vector sensors or shape sensors have attracted much attention as
they provide not only the amplitude but also directional infor-
mation about the signal. For shape sensing, the most frequently
employed configurations are fiber grating structures [13–16]
and inline fiber interferometers [17,18]. For the grating-based
structures, the tracking of the bending direction is achieved by
inscribing gratings in asymmetrical fibers such as eccentric core
fibers [13], multi-core fibers [14], D-shaped cladding fibers
[15], holey fibers [16], etc. The fabrication process is mostly
complex and cost-sensitive. Inline fiber interferometers require
accurate spectral detection and complicated analysis for signal
interrogation due to the large number of densely packed peaks
in the transmission spectrum.

On the other hand, machine learning becomes a powerful
tool in solving many engineering problems. Multiple levels of
abstraction are used to find the inner relationship among the
complicated data by multilayer models [19–21]. Moreover,
machine learning has succeeded in solving optical research
problems such as microscopy resolution enhancement [22,23],
optical experiment design [24], optical imaging [25–29], and
optical communications [30]. Machine learning has greatly sim-
plified the progress of information demodulation and analysis,
and opens a door to research on complex images or patterns. In
fiber sensors, specklegrams in the form of granular light-mode
patterns generated from a multimode fiber have been studied
by machine learning to decode the vectorial bend information
or stresses applied in the fiber path [21,31,32]. However, due to
the quasi-random nature of the specklegram, the analysis often
takes much effort to interpret the relatively simple signals.

The current solutions for fiber vector sensors often require
non-standard fiber forms and grating inscription [13–16],
adding to the fabrication cost of the system. The spectro-
scopic methods involving interferometers and sharp filters
demand accurate, stable, and often expensive spectral detection
schemes to achieve high sensitivity [17,18]. Moreover, the work
range is limited to the bandwidth of the system, and it is often
difficult/costly to achieve fine spectral resolution over a broad
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wavelength range. Fiber vector sensors using multimode inter-
ference (MMI) effect require only standard fibers for the light
path. The intensity distribution of the 2D image at the fiber
end-facet is captured by a standard camera to analyze the fiber
deformation [33]. However, considering the large number
of eigenmodes in the fiber, rigorous analysis of the image in
relation to the actual fiber form becomes cumbersome using
conventional numerical methods, such as eigenmode expan-
sion and beam propagation methods, as each eigenmode has
to be recalculated at every bending segment (upon weak arch
approximation), causing simulation overload. An effective way
to interrogate the obtained images is needed to further broaden
the application of such MMI sensors.

Meanwhile, machine learning has become a powerful tool
for image training and recognition. In this work, a directional
position sensing system is first built based on the fiber MMI
effect. A subsequent image recognition program is established
by machine-learning algorithms to find the hidden correlation
between the image pattern and fiber form without solving
Maxwell’s equations rigorously to pinpoint the exact solution.
Care is taken to eliminate unwanted mechanical residue stresses
along the fiber path so as to keep the interference images clean
from random speckles. The images upon imposed bending by
programmed positioning are collected automatically and fed to
a convolutional neural network (CNN) model for data training.

In the following sections, optical theory, fiber sensor design,
and experimental setups are explained in detail. The stability
of the imaging system and repeatability of the fiber positioning
system are also presented. In Section 4, the image collection
processes are introduced, and the machine-learning method is
applied to classify the images. Section 5 summarizes the results
and shows that both directional and fine-resolution sensing
ability can be achieved. Prospects for further development and
applications are given in the Conclusion.

2. FIBER SENSOR DESIGN AND SIMULATIONS

Lumerical Mode Solution is an optical simulation software used
to simulate the MMI structure consisting of the center-axis-
aligned single-mode fiber (SMF) and multimode fiber (MMF).
The SMF has a core diameter of 10.6 µm and a numerical aper-
ture (NA) of 0.14. The MMF has a core diameter of 105µm and
a NA of 0.22. The cladding diameter of both fibers is 125 µm.
In the simulation, the refractive index is set to 1.4567 for the
SMF core and 1.4666 for the MMF core. The refractive index
of the cladding is 1.45. The lengths of the SMF and MMF are
100 µm and 5 cm, respectively. Upon entering the MMF, the
single-mode launch light at 1550 nm starts to overlap/couple
with the eigenmodes in the MMF, and an intermodal interfer-
ence develops along the fiber axis, as manifested by Fig. 1(a). To
complete the simulation within reasonable time, only the first
500 eigenmodes are selected.

Since the structure is circularly symmetric with respect
to the fiber axis, the interference pattern is accompanied by
the self-imaging effects distributed in the radial plane in a
concentric-ring pattern. The pattern at 20 mm, shown in
Fig. 1(b), features a concentric ring structure with alternating
light and dark zones. To verify the simulation, the MMF is first
spliced to the SMF by a standard fusion splicer and then sub-
sequently cleaved at a distance of 20 mm using a standard fiber
cleaver (CT-50). A laser diode (LD) at 1550 nm is connected to
the SMF. The output of the MMF is focused onto an infrared
(IR) camera via a lens. The image, shown in Fig. 1(c), agrees well
with the simulation.

Previous work has shown that the MMI image can reveal the
vector bending information of the MMF but lacks a detailed
interrogation program to recognize the fiber condition precisely
[29]. In this work, an automatic directional positioning system
is built to distort the MMF in controlled directions and steps.
The collected images are fed to a machine-learning algorithm to
train the dataset. In order to facilitate fiber mounting, the length
of MMF in the experiment is taken as 85 mm. When the system

Fig. 1. (a) Intermodal interference profile inside the MMF along the fiber axis. (b) Simulated light intensity distribution, and (c) camera shot of the
fiber MMI at 20 mm. (d) Camera shot of the fiber MMI at 85 mm.
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is positioned at the initial “null” state, the undisturbed output
image is shown in Fig. 1(d).

3. EXPERIMENT

A. Experimental Setup

The schematic of the experimental setup is described in
Fig. 2(a), and the photo of the setup is shown in Fig. 2(b).
The system adopts a handheld LD as light source. The input
SMF is mounted on a budget three-dimension translation stage
(E3030) by a homemade clamp. The clamp consists of a sub-
holder with a sawed groove and a lid. The fiber can move freely
in the groove but also follows smoothly the back-and-forth
scanning movement of the stage. The movement range of the
translation stage is 16 mm in the X , Y , and Z directions and
the repeating accuracy is±2 µm. The minimal step, driven by a
single electronic pulse, is∼ 0.5 µm.

The open end of the MMF is securely fixed on a holder so
that the imaging system stays in focus during the movement.
The imaging system consists of a CCD camera (Xenics Bobcat-
640-GigE, 640× 512 pixel resolution, 20 µm pixel pitch, and
100 Hz frame rate) and an objective lens (focal length 10 mm).
A LabVIEW program was developed to control the movement
pattern of the stage via a script and trigger the camera in a syn-
chronized manner. All experiments are conducted at room
temperature.

B. Stability and Repeatability

In order to evaluate the stability and repeatability of the system,
the normalized average intensity variation (AIV) of the images
is calculated upon different test settings. Normalized AIV, often
used by researchers to find out the environmental impacts on the
sensing system [34], is expressed as

AIV=
1

M · X · Y

X−1∑
x=0

Y−1∑
y=0

∣∣∣S i
xy − S1

xy

∣∣∣ , (1)

where S i
x y represents the gray scale of pixels (from 0 to 65535,

according to the light intensity received) at position (x , y ) and

Fig. 2. Schematic of experimental setup: (a) Schematic of the sens-
ing system; (b) photo of the experimental setup.

Fig. 3. System stability study: AIV value increases slightly and tends
to be stable over time.

S1
x y is the corresponding reference pixel at the initial condition.

M equals 65535, the maximum gray scale of pixels.
To test the system stability, continuous camera shots were

taken every 10 s for 8 h without moving the stage deliberately.
The room was kept dark to eliminate the interference of natural
light and fluorescent lamp. The first photo was calculated as
the initial reference; AIV was then calculated and displayed
in Fig. 3. The value increases slightly and tends to be stable. It
could be caused by the temperature of the CCD camera after
a long time working, as well as the instability of the handheld
laser. In general, the AIV value stays and fluctuates within about
2%, which is considered low enough to conduct meaningful
experiments.

The repeatability test of the fiber positioning system was
performed as follows. The MMF was driven by the translation
stage and moved back and forth between two positions, 0 mm
and 5 mm, along the Y axis. As soon as the fiber arrives at these
two positions, the CCD camera records an image. In total,
180 photos were taken for each position. The AIV values were
calculated as shown in Fig. 4(a). The blue line with circles shows
the AIV at 0 mm and the red line with asterisks shows the AIVs
at 5 mm. The reference images in the AIV calculations are taken
as the first photo at their respective positions. Though the values
fluctuate, all remain below the 2% mark.

Figure 4(b) shows the other test. It describes the changes of
AIV when fiber is moved from 0 to 5 mm and back by a step of
10 µm. The MMI images at each position were recorded, and
corresponding AIVs were calculated with the same reference
condition at 0 mm. AIVs changed smoothly and can almost
coincide with each other for the forward and backward move-
ments. It can be seen that during the reciprocating motion of the
fiber, the AIV values stay almost the same when the fiber arrives
at the same position, regardless of the forward or backward
movement. This good repeatability is achieved by designing a
suitable clamp that allows the free movement of the fiber but
also enforces a responsive movement following the stage.

4. PROCESSING METHOD

A. Data Collection

The machine-learning process can take a considerable amount
of time, and the experiments are designed in an efficient way to
demonstrate the concept. The system is scripted to move and
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Fig. 4. Results of the system repeatability study using AIV: (a) AIV values at 0 mm (blue circles) and 5 mm (red asterisks); (b) AIV values when the
stage moves from 0 to 5 mm and back.

Fig. 5. (a) Stage movement pattern for directional sensing. 10 classes of positions are formed along each of the four axes (+Y ,−Y ,+Z,−Z), with
a span of 8 mm. (b) Stage movement pattern for the investigation of the fine spatial resolution within a small range along+Y .

collect images automatically for 1) pattern recognition from
different positions with relatively large distances along 4 axes
(+Y , −Y , +Z and −Z) to test the directional sensing ability
and 2) positioning studies from a fixed distance but with small
steps along a given direction (+Y ) to test the spatial resolution
of the sensing system.

Figure 5(a) illustrates the directional sensing experiment.
The fiber was driven to move along the negative and posi-
tive Y and Z axes. Each of the four axes is divided into 10
regions/classes with equal distance of 0.8 mm. The move-
ment step is set to 2.5 µm so that each class contains 320
positions. Each position corresponds to a certain fiber form,
consisting of a series of bends in the 3D space. The system is
first initialized at the 0 µm position with a good multi-ring
interference pattern as shown in Fig. 1(d). The stage is then
scripted to move and drive the fiber in the following pattern
0→+Y→ 0→−Y→ 0→+Z→ 0→−Y→ 0. Upon
arriving at each position, the stage waits 2 s, leaving enough time
for the mechanical system to stabilize, as well as for the camera to
take and save the image.

Figure 5(b) illustrates the experiment for the positioning
resolution study. The step was set to the minimal values of
0.5 µm as allowed by the control system, and a scanning move-
ment was carried out repeatedly between the two positions at
Y = 1000 µm and Y = 1150 µm for 360 rounds. The camera

takes a photo after each 0.5 µm movement completes, and in
total 108,000 photos are collected and used to classify the 300
positions.

Polarization control is neglected in this experiment, as
the effect of different polarization modes in the MMF upon
deformation is lumped into the MMI image for subsequent
data training. However, the long-time drifting of the polari-
zation states, e.g., through temperature gradient, mechanical
vibrations, or other changes in the working environment, can
reduce the effectiveness of the short-time trained model without
considering the polarization effect.

B. Machine Learning

In the experiments, a great number of photos in the format of
binary files from the LabVIEW program were collected. For
the machine-learning algorithm, they were first classified and
processed. Then, the labeled photos were trained, validated, and
tested by 18-layer residual networks (ResNet) [35]. The whole
progress was carried out in the environment of Python-3.7.3
and Pytorch-1.3.1, running on Windows 10.

Among the many commonly used CNNs, 18-layer ResNet is
chosen because it has relatively higher accuracy and fewer com-
putational operations [36]. The ResNet codes from GitHub
of Pytorch [37] were used in this paper. The structure of the
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Fig. 6. Structure of simplification for 18-layer ResNet.

algorithm is shown in Fig. 6. The input image is firstly filtered
to 64 channels by a 7× 7 kernel filter and stride of 2. The rest
blocks are convoluted by 3× 3 kernel filters. The skip connec-
tion arrow shortcuts the two blocks to avoid gradient vanishing,
which is the key competence of the ResNet algorithm. The
following blocks, with three other colors, do similar compu-
tations except the dotted line with the arrow. Between blocks
with different colors, a pooling layer is used and the output
shape is reduced by half. In every single block, convolution,
batch normalization, and ReLU layers are included. Eventually,
after all convolutional operations, global average pooling, fully
connected layer, and Softmax are used to calculate probabilities
and give corresponding classifications.

5. RESULTS AND DISCUSSION

For the directional sensing experiment, there are 40 classes with
equal distances on the four axes, consisting of over 12,800 pho-
tos. For machine learning, 60% of these photos are randomly
chosen for training, 20% for validation, and the remaining 20%
are used for testing. Figure 7 shows the cross-entropy loss of the
model during training. It drops dramatically, then waves and
approaches to zero. In the end, a training accuracy of 97.15%
is reached and the test accuracy is 97.34%, as listed in the inset
table.

The results have clearly demonstrated the sensitivity of multi-
ring pattern to vectorial fiber deformation, as the bending/shape
changes in different directions have strong rules and characteris-
tics that can be extracted and summarized by machine-learning
algorithms. Using 320 photos for one class is not a big dataset,
but it still leads to a high accuracy of over 97%.

To give a rough impression of the spatial resolutions this
system can achieve, the following tests are performed, as shown
in Table 1, using the 108,000 photos from the experiment

Fig. 7. Cross-entropy loss reduces during training steps. The inset
table lists the final accuracy.

Table 1. Train and Test Accuracy on Level of 5–75 µm
Interval

a

Interval/µm Classes Photos Train Accuracy Test Accuracy

5 6 300 17.22% 16.39%
15 6 300 30.22% 33.33%
25 6 300 71.94% 71.39%
50 3 300 70.40% 65.56%
75 2 300 95.00% 96.67%

aEach class contains 300 photos.

shown in Fig. 5(b). Only 300 photos from different positions
are randomly selected for one class. Due to the quantity limit of
datasets, some categories of intervals can only be divided into
fewer classes. Generally, the train and test accuracies increase
with greater intervals. When the photos are classified on the
level of 75 µm, a result of accuracy 95% can be achieved, which
means the sensing system can recognize well with this resolution
level with only a small quantity of photos. When the interval is
25µm, the sensing system can get higher accuracy of up to 70%.
However, the system did not perform well on finer resolutions,
and the accuracy of 5µm interval is close to its random probabil-
ity (16.67%). The results could be a result of the small quantity
of the datasets as well as their diversity.

Investigation went on with finer resolutions for higher accu-
racy with bigger datasets. The interval between 5 and 50 µm
is focused and the quantity of the datasets for each class is
increased to 1000, as shown in Table 2. Overall accuracy is much
improved for finer resolution. When the interval is greater than
10 µm, the accuracy goes beyond 80%. Even for an interval of
5 µm, the accuracy reaches 60%. As the translation stage is a
budget model with a position-repeating accuracy of ±2 µm,

Table 2. Train and Test Accuracy on Level of 5–75 µm
Interval

a

Interval/µm Classes Photos Train Accuracy Test Accuracy

5 10 1000 60.15% 60.50%
7.5 10 1000 65.10% 66.15%
10 10 1000 80.20% 82.10%
15 10 1000 85.10% 86.30%
20 7 1000 86.57% 86.07%
50 3 1000 87.33% 88.50%
75 2 1000 99.83% 99.75%

aEach class contains 1000 photos.



5750 Vol. 59, No. 19 / 1 July 2020 / Applied Optics Research Article

Table 3. Additional Test Accuracy of the 75 µm Case Using Models I–III
a

Test Data Source Round 1 Round 60 Round 120 Round 180 Round 240 Round 300 Round 360

Model I 50.33% 94.98% 49.83% 49.83% 49.83% 49.83% 49.83%
Model II 83.67% 50.17% 56.52% 92.64% 79.26% 98.66% 82.27%
Model III 81.99% 91.31% 97.66% 93.65% 74.58% 73.91% 83.61%

aModel I training data from round Nos. 50 and 51 only, Model II training data from round Nos. 1 and 360 only; Model III training dataset is formed by taking two
photos from each round from Nos. 1 to 300.

the results have shown its potential in detecting fine position
changes of a mechanical system.

The diversity and richness of data also play an important
role in the training process. As mentioned in Section 4.A, 300
photos for each round and a total of 360 rounds were collected
from the experiment. In Table 1, the model (Model I) takes the
images only from Rounds 50 and 51 for training, validation,
and test. Additionally, Model II is trained with images only from
Rounds 1 and 360, while Model III takes two images from every
round from numbers 1 to 300. For all three models, the remain-
ing untrained data are used for test purposes and the results
are summarized in Table 3. Close to the training data (Nos.
50 and 51), Model I works well, but the accuracy deteriorates
quickly when the test data moves further to other rounds, down
to complete randomness (∼50%). Model II works better for a
broader selection of data rounds, but loses its accuracy between
Nos. 60 and 120. Model III performs well in general, providing
a good accuracy in almost all the data rounds. Comparing the
three models, it can be seen that richness and diversity in data
selection can greatly improve the model robustness.

It is worth noting that though high accuracy can be achieved
in detecting fiber positions using the CNN method on large,
rich, balanced datasets, the interrogation scheme is still of a
probabilistic nature, i.e., errors may occur even in well-trained
scenarios. For the traditional spectroscopic method using grat-
ings and inline interferometers, detection can be theoretically
unambiguous and practically only subject to system noise and
errors.

The strength of using CNN in this work may be manifested in
its generality and scalability. Traditional spectroscopic method
suffers from a dilemma: it is difficult to achieve both fine resolu-
tion and large work range at reasonable cost. The CNN method
can in principle train any images, even when the fiber is heavily
distorted, and fine resolution can still be achieved so long as a
sufficient number of images are collected for the training. The
resolution of 5 µm and work range of±8 mm demonstrated in
this work is limited by the available budget motor-stage. Future
work will be done to expand this limit.

Due to its probabilistic nature, the CNN method is not
suitable for applications that are risky for catastrophic failure
consequences, nor for systems that require high-level security.
But thanks to its simple, scalable nature and the great flexibility
of fibers, the proposed method may be a powerful auxiliary tool
for tracking the directional movement of any mechanical parts.

6. CONCLUSION

In recent years, with the development of robots and unmanned
automobiles, there has been huge demand for simple and prac-
tical fiber sensors. This paper proposes a novel fiber directional
position sensor based on MMI and machine learning. With
one simple fiber spliced by a standard SMF and MMF, direc-
tions and positions of displacement can be detected. Moreover,
machine learning is used to analyze and distinguish the multi-
ring patterns instead of the traditional interrogation system. In
experiments, accuracy over 97% was achieved when the ResNet-
18 algorithm was used to recognize multi-ring patterns from
four different directions with an 800 µm spatial resolution,
using a dataset of merely 320 photos for each class. Moreover,
the system can achieve over 60% accuracy for a fine resolution of
5µm when the dataset is enlarged to 1000 photos.

For future work, efforts will be made to enhance the spatial
resolution by upgrading the translation stage and improving the
fiber–clamp mechanics. Deeper neural networks and smarter
selection of datasets are also expected to help reduce perturba-
tions from environments on the multi-ring patterns. We believe
this work will provide an alternative solution to building a
low-cost directional position senor for mechanics and aerospace
systems.
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