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A B S T R A C T

Focusing on the optimization of flapping foil geometry and motion parameters, this study proposes a joint
multi-objective optimization strategy based on the multitask and multi-fidelity Gaussian process (MMGP). A
multi-objective expected improvement (MOEI) acquisition function is first introduced and applied, treating the
exploration and the exploitation as independent objectives. By using the ZDT1 test function, the MOEI method
is verified to be better than the conventional weighted EI method in terms of prediction accuracy. Upon the
establishment of the model, the correlation and sensitivity analyses are carried out based on the data set.
Subsequently, this methodology is utilized to execute a joint optimization of geometry and motion parameters
across different fidelity levels, aiming to attain global optimal solutions. To boost the optimization outcomes,
a bi-level genetic algorithm (BiGA) is further designed and implemented, through which an configuration
optimization for the amphibious foil considering multiple motion modalities is accomplished. This study not
only presents a theoretical foundation for optimizing the design of the flapping foil but also offers effective
strategies and methods for practical implementation.
1. Introduction

Flapping foils are bio-inspired devices that can generate thrust and
lift by mimicking the motion of some kinds of aquatic and aerial
animals. Many animals in nature have achieved amphibious capabilities
by flapping their wings or fins, such as flying fish, seagulls, and
cormorants (Wang et al., 2020; Zhang et al., 2019). Consequently,
the concept of flapping foils holds significant potential in the creation
of amphibious robots, engineered to operate seamlessly in both air
and water (Wu et al., 2020; Wang et al., 2020; Zhang et al., 2019).
However, the endeavor of designing and optimizing an efficient and
versatile amphibious foil is an intricate challenge due to the different
performance objectives and constraints in different media. For example,
aerial flapping foils need to generate substantial lift, while underwater
flapping foils must prioritize the production of enhanced thrust (Wang
et al., 2020; Schouveiler et al., 2005).

With the rapid development of artificial intelligence (AI), more and
more AI algorithms have been applied to the optimization of flapping
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foils or amphibious robots, providing new approaches and solutions for
improving their performance and versatility. For example, surrogate
models based on machine learning techniques can reduce the compu-
tational cost and improve the accuracy of optimization algorithms by
learning from data and approximating the objective functions (Alizadeh
et al., 2020). Genetic algorithms (GA) are a class of evolutionary algo-
rithms that can explore a large and complex search space by mimicking
the natural selection and genetic variation processes (Singh et al.,
2018). These methods have been shown to be effective in optimizing
the geometry or motion parameters of flapping foils for different ob-
jectives such as thrust, lift, efficiency, or maneuverability (Licht et al.,
2009; Tuncer and Kaya, 2005; Zheng et al., 2020; Zhang et al., 2022;
Ji et al., 2022).

There have been some representative works that employ AI methods
to optimize amphibious robots and flapping foils. A comprehensive
review by Sun et al. (2022) categorizes bio-inspired fish robots based on
their mechanical properties, such as rigid, flexible, soft, and amphibious
029-8018/© 2024 Elsevier Ltd. All rights reserved.
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types. In the realm of propulsion optimization, Wang et al. (2020)
and Schouveiler et al. (2005) employ genetic algorithms and particle
swarm optimization, respectively. For path planning, Li and Wang
(2021) introduces a fireworks algorithm-based approach, taking into
account distance, energy consumption, and mode-switching costs, an
aspect further explored in the turtle-inspired robot by Zheng et al.
(2022). Notably, Licht et al. (2009) investigates the asymmetric flap-
ping motion inspired by sea turtles, expanding the applicability to both
aquatic and aerial environments.

Although these studies have utilized various optimization meth-
ods such as genetic algorithms, the particle swarm optimization, and
fireworks algorithms. To the best of our knowledge, we have not
seen anyone focused on both the geometry and the motion param-
eters for amphibious robots. The BiGA is a specialized genetic algo-
rithm designed to solve nested optimization problems with interacting
decision-making units at different hierarchical levels (Oduguwa and
Roy, 2002) and has been used in many fields such as engineering
design, transportation, economics and management (Sinha et al., 2014,
2018; Dempe and Zemkoho, 2019; Wu et al., 2021). It is particu-
larly suited for the complex environment requirements involved in the
amphibious foil design.

However, most methods require a large number of evaluations, or
suffer from local optima. Moreover, these methods are not likely to
capture or consider the interactions and trade-offs between geometry
and motion parameters, or between different performance objectives.
Consequently, sub-optimal solutions may be obtained that fail to fully
exploit the coupling effects between geometry and motion (Wang et al.,
2020). Furthermore, most of these methods rely on high-fidelity numer-
ical simulations or experiments, which are computationally expensive
or time-consuming.

In this paper, a novel joint multi-objective optimization strategy for
amphibious flapping foils is proposed, which leverages a flexible and
efficient surrogate model to handle the high-dimensional and noisy data
from multiple sources with different levels of fidelity and tasks. The
strategy aims to optimize both the geometry and the motion parame-
ters of flapping foils simultaneously, considering multiple performance
objectives such as the thrust and the lift. The MOEI, which consid-
ers exploration and exploitation as independent objectives (Zhan and
Xing, 2020), is combined with the multi-acquisition function (multi-
AF) to consist the infill criteria. The multi-AF, proposed in our previous
work (Wang et al., 2024), is utilized to balance the convergence of each
output. A synthetic test function is adopted to evaluate the prediction
accuracy of the strategy. Moreover, a bi-level genetic algorithm frame-
work is applied to conduct configuration optimization for amphibious
foils considering multiple motion modalities. The strategy can effec-
tively balance the global and local search, reduce the computational
cost, and obtain Pareto-optimal solutions in configuration and motion
characteristics.

The rest of this paper is organized as follows. Section 2 introduces
the active learning model based on the MMGP, and the infill criteria
combined the MOEI and the multi-AF. A joint global optimization,
correlation and sensitivity analyses, and a multi-objective configura-
tion optimization along with hydrodynamic analyses are presented in
Section 3. Finally, concluding remarks are addressed in Section 4.

2. Materials and methods

2.1. Physical model

Data fusion, which is capable of improving the modeling, optimiza-
tion and control level, plays a critical and essential role in the study of
flapping foil system and the realization of efficient, reliable and flexible
flight and propulsion. Basic principles and characteristic parameters of
the flapping foil system will be firstly introduced here.

For a single foil as shown in Fig. 1, the geometry parameters include
the chord length 𝑐, the maximum thickness 𝑡, the maximum camber 𝑚
2

Fig. 1. Schematic diagram of geometry parameters of a foil.

and the corresponding position 𝑝. It is worth noting that 𝑡, 𝑚 and 𝑝 have
been non-dimensionalized by the chord length.

The flapping motion of the foil can be characterized by several
parameters. First, the Strouhal number St is defined as follows :

St =
𝑓𝐿
𝑈

(1)

where 𝑓 is the flapping frequency, 𝑈 is the free stream velocity, and 𝐿
is the characteristic length. In present study, the chord length is chosen
as the characteristic length. The flapping motion is usually designed as
the coupling of two sinusoidal motions with the same period, heaving
and pitching,

𝑦(𝑡) = 𝑦0 sin(2𝜋𝑓𝑡),

𝜃(𝑡) = 𝜃0 sin(2𝜋𝑓𝑡 + 𝜓),
(2)

where 𝑦0 and 𝜃0 are the heaving and pitching amplitudes, respectively.
𝜓 stands for the phase angle between the two motions. The flapping
motion is shown in Fig. 2.

To describe the performance of the two-dimensional flapping foil,
the time-averaged thrust coefficient 𝐶𝑇 and lift coefficient 𝐶𝐿 are
defined, which are derived from the forces in the 𝑥 and 𝑦 directions,
𝐹𝑥(𝜏) and 𝐹𝑦(𝜏), and are further non-dimensionalized. Mathematically,
we have :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝑇 = 1
1
2𝜌𝑈

2𝑐𝑇 ∫

𝑇

0
𝐹𝑥(𝜏)𝑑𝜏,

𝐶𝐿 = 1
1
2𝜌𝑈

2𝑐𝑇 ∫

𝑇

0
𝐹𝑦(𝜏)𝑑𝜏.

(3)

where 𝑇 is the flapping period and 𝜌 is the fluid density.
To sum up, there are totally seven parameters for design consider-

ation. Three parameters are related to the foil geometry including the
maximum thickness 𝑡, the maximum camber 𝑚 and the corresponding
position 𝑝, and the other four parameters are related to the flapping
motion including the Strouhal number St, the heaving amplitude 𝑦0, the
pitching amplitude 𝜃0 and the phase angle 𝜓 . The time-averaged thrust
and lift coefficients, 𝐶𝑇 and 𝐶𝐿, are chosen to evaluate the performance
of the amphibious foil flapping in water and air.

2.2. Numerical model

In this study, we require a numerical platform that can effec-
tively predict flapping performance. The LilyPad simulation platform,
which is based on the boundary data immersion method (BDIM), is
applied for the amphibious foil. The BDIM solves the time-dependent
Navier–Stokes equations and couples the motion of the body with
the surrounding fluid through a kernel function, allowing simulations
over the entire domain Weymouth and Yue (2011). Notably, the BDIM
method has been previously applied and validated for problems involv-
ing flapping foils in studies such as Zheng et al. (2020), Ji et al. (2022)
and Sun et al. (2023). The method exhibits second-order convergence
and has also garnered validation in a wide range of hydrodynamic
simulations (Maertens and Weymouth, 2015; Schlanderer et al., 2017).
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Fig. 2. Schematic diagram of the flapping motion which consists of pitching and heaving.
Fig. 3. Sketch of computational domain.

The test case used for validation corresponds to the foil flapping at
the Reynolds number Re = 𝜌𝑈𝑐∕𝜇 = 500 with 𝜌 and 𝜇 denoting the
density and dynamic viscosity of the fluid. The mesh configuration in
this work is a rectangular Cartesian grid, with uniform dense grids used
in the field. The domain size is 16𝐿 × 16𝐿 for high-fidelity simulations
and 8𝐿 × 8𝐿 for low-fidelity simulations. The smaller domain size for
low-fidelity simulations is deliberately chosen to reduce the computa-
tional time, though this sacrifices a degree of accuracy. A high-fidelity
simulation typically takes an average of 8 hour, while a low-fidelity
simulation can be completed in a half minute. This allows for rapid
results when the high precision is not imperative. Taking the fluid
domain for high-fidelity simulations for example, the relative position
of the flapping foil center in a state of equilibrium in the fluid domain
is shown in Fig. 3. For boundary conditions, the uniform inflow, zero
gradient outflow, and free slip at top and bottom are applied. Moreover,
a no-slip condition is enforced on the flapping foil. In this study, the
grid resolution is represented by the number of grid points per chord
length. For a uniform grid, we define 𝛿𝑥 = 𝛿𝑦 = 𝐿∕64 for the high-
fidelity simulations and 𝛿𝑥 = 𝛿𝑦 = 𝐿∕16 for the low-fidelity simulations.
Detailed validations are presented in Appendix A.

Two main functionalities based on the surrogate model optimiza-
tion are prediction and optimization. The predictive capability will
be assessed through the quantitative analysis of mean absolute error
(MAE). The Pareto front demonstrates the optimization results of the
Gaussian process model. The use of a Pareto front allows for the visu-
alization of trade-offs in multi-objective optimization problems, thereby
offering invaluable insight for identifying the set of potential optimal
solutions. This, in conjunction with the MAE assessment, provides a
comprehensive evaluation of the model’s predictive and optimization
performances.
3

Fig. 4. Framework and workflow of the MMGP. Dashed lines represent framework,
while solid lines indicate workflow.

2.3. Active learning model based on MMGP

In order to use a minimum amount of high-fidelity data to accu-
rately predict and optimize multi-objective flapping performance, we
propose an innovative MMGP active learning model along with a multi-
AF, tailored for flapping multi-objective optimization. The framework
and workflow of the MMGP model are shown in Fig. 4.

The MMGP framework integrates the concepts of multi-fidelity GP,
drawing inspiration from the Hadamard Multitask GP (Bonilla et al.,
2007), and the Independent Multitask GP paired with the multi-AF and
MOEI. Both the Hadamard Multitask GP and the Independent Multitask
GP are extensions of the Conventional GP(Singletask and Single-fidelity
GP). In this context, the multi-fidelity GP evolves from the Hadamard
Multitask GP through an adaptation of the index kernel. This in-
dex kernel quantifies the covariance between tasks, and uniquely,
in the Hadamard Multitask GP, each input aligns with an individ-
ual task. The model combines multi-fidelity sub-models and multitask
sub-models, which can fully utilize the results of multi-fidelity sim-
ulations to effectively handle multi-objective problems. Based on the
proposed multi-AF, the candidate samples are selected and then they
are automatically simulated to update the MMGP model.

For workflow of the MMGP model, the multitask sub-models en-
gage in real-time interaction with the environment, especially the CFD
platform, to acquire adequate low-fidelity data in the initial phase. A
Latin hypercube oversampling technique is then employed to secure 50
high-fidelity data samples. These amalgamated data from both high and
low fidelity sources serve as the foundation for initializing the MMGP
model. As the workflow processes, the MMGP further interacts with the
environment to collect high fidelity data, thus initiating the training
process.

In the classical active learning framework, various acquisition func-
tions are used to evaluate and quantify the extent to which the can-
didate points improve the model. However, the common acquisition
function can only correspond to one task. In multitask model, how
to flexibly balance the improvements of various outputs is crucial to



Ocean Engineering 294 (2024) 116862Z. Wang et al.
training effects. In the previous work, the multi-AF is adopted to add
more weight to less convergent sub-models. The multi-AF includes a
pair of self-adjust coefficients 𝛼, and it can be expressed as follows:

𝛿(�⃗�) = 𝛼
𝛿𝑐𝑡(�⃗�)

max
(

𝛿𝑐𝑡(�⃗�)
) + (1 − 𝛼)

𝛿𝑐𝑙(�⃗�)
max

(

𝛿𝑐𝑙(�⃗�)
) , (4)

with
⎧
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⎪

⎪

⎪

⎩

𝛼 = 𝑚
𝑚 + 𝑛

,

𝑚 =
MAE𝑐𝑡

max(𝑓𝑐𝑡) − min(𝑓𝑐𝑡)
,

𝑛 =
MAE𝑐𝑙

max(𝑓𝑐𝑙) − min(𝑓𝑐𝑙)
,

(5)

where 𝑓𝑐𝑙 and 𝑓𝑐𝑡 are prediction values of the GP model, MAE𝑐𝑡 and
MAE𝑐𝑙 are average absolute losses of thrust coefficient and lift coeffi-
cient that can be estimated from the filling points in the last iteration.
It is assumed that there are 𝑘 points to be infilled in one iteration.
Denoting the 𝑖th filling point as

(

�⃗�𝑖, 𝑓 𝑖
)

, we have:
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𝑖
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(6)

As for 𝛿𝑐𝑡(�⃗�) and 𝛿𝑐𝑙(�⃗�), they can be any acquisition functions in gen-
eral. The most commonly used acquisition functions include probability
of improvement, expected improvement, and upper confidence bound.

2.4. Infill criteria combination of MOEI and multi-AF

The expected improvement is an acquisition function for a single
objective that includes two components, exploitation and exploration.
It is expressed in the following form:

EI (𝐱) = E
[

𝐼 (𝐱) ∣ 𝑌 (𝐗) = 𝐲
]

,

=
(

𝑦𝑚𝑖𝑛 − �̂� (𝐱)
)

Φ
(

𝑦𝑚𝑖𝑛 − �̂� (𝐱)
�̂� (𝐱)

)

+ �̂� (𝐱)𝜙
(

𝑦𝑚𝑖𝑛 − �̂� (𝐱)
�̂� (𝐱)

)

,
(7)

where the first term at the right hand side represents the exploitation
part, and the second term considers the uncertainty of exploration. In
previous studies, the two components have typically been integrated
by the weighted EI method, using a weight factor 𝑤 to simply balance
the exploitation and exploration (Li et al., 2023). Take two outputs for
example, the multi-AF can be given as:

EI𝑠𝑢𝑚 = 𝛼EI𝑐𝑡 + 𝛼∗EI𝑐𝑙 =
[

𝛼
𝛼∗

]T [EI𝑐𝑡
EI𝑐𝑙

]

, (8)

with 𝛼∗ = 1 − 𝛼 and

EI𝑐𝑡 = 𝑤𝑐𝑡EI
𝑒𝑥𝑝𝑙𝑜𝑖𝑡
𝑐𝑡 +𝑤∗

𝑐𝑡EI
𝑒𝑥𝑝𝑙𝑜𝑟𝑒
𝑐𝑡 =

[

𝑤𝑐𝑡
𝑤∗
𝑐𝑡

]T [
EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑐𝑡

EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑐𝑡

]

, (9a)

EI𝑐𝑙 = 𝑤𝑐𝑙EI
𝑒𝑥𝑝𝑙𝑜𝑖𝑡
𝑐𝑙 +𝑤∗

𝑐𝑙EI
𝑒𝑥𝑝𝑙𝑜𝑟𝑒
𝑐𝑙 =

[

𝑤𝑐𝑙
𝑤∗
𝑐𝑙

]T [EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑐𝑙

EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑐𝑙

]

, (9b)

where 𝑤∗
𝑐𝑡 = 1−𝑤𝑐𝑡 and 𝑤∗

𝑐𝑙 = 1−𝑤𝑐𝑙 are defined to make the expressions
compact. Equivalently, we have:

EI𝑠𝑢𝑚 = EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡 + EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒, (10)

with EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡 representing the total exploitation,

EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡 = 𝛼𝑤𝑐𝑡EI
𝑒𝑥𝑝𝑙𝑜𝑖𝑡
𝑐𝑡 + 𝛼∗𝑤𝑐𝑙EI

𝑒𝑥𝑝𝑙𝑜𝑖𝑡
𝑐𝑙 =

[

𝛼
𝛼∗

]T [𝑤𝑐𝑡 0

0 𝑤𝑐𝑙

][

EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑐𝑡

EI𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑐𝑙

]

,

(11a)
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Fig. 5. The total exploration and exploitation components during the training process.
The triangular points (blue online) denote the Pareto front.

and EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒 representing the total exploration,

EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = 𝛼𝑤∗
𝑐𝑡EI

𝑒𝑥𝑝𝑙𝑜𝑟𝑒
𝑐𝑡 +𝛼∗𝑤∗

𝑐𝑙EI
𝑒𝑥𝑝𝑙𝑜𝑟𝑒
𝑐𝑙 =

[

𝛼

𝛼∗

]T [
𝑤∗
𝑐𝑡 0

0 𝑤∗
𝑐𝑙

][

EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑐𝑡

EI𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑐𝑙

]

.

(11b)

Though some studies have employed varying weights to address
trade-offs between different objectives (Arias-Montano et al., 2012),
this method essentially maps candidate points onto isolines in the total
exploration–exploitation Pareto front plane, as illustrated in Fig. 5.
Comparing with the actual Pareto front, the above mapping method
may lead to sub-optimal selections. For example, the weighted EI
method is likely to select points C and G, which are actually inferior
to the non-dominated solutions C and E.

Therefore, the MOEI is further fused with the multi-AF in this
study to treat the total exploration and exploitation components as two
objectives, as shown in Fig. 6. Points on the Pareto front are selected
in each iteration as the infill criteria of the model.

3. Results and discussions

3.1. Verification of MOEI

Though the superiority of MOEI has been previously established
in Feng et al. (2015), present study focuses on the problem with seven
inputs and two outputs to investigate whether the MOEI retains its
advantageous performance. To compare the MOEI and the weighted
EI method, the ZDT1 test function (Deb et al., 2005; Huband et al.,
2006) is utilized as a benchmark due to its flexibility in supporting two
outputs and up to thirty inputs or rather decision variables. The ZDT1
test function aims to optimize the following two objectives:

min 𝑓 (𝑥) = 𝑥1, (12)

min 𝑔(𝑥) = ℎ(𝑥)
⎡

⎢

⎢

⎣

1 −

√

𝑓 (𝑥)
ℎ(𝑥)

⎤

⎥

⎥

⎦

, (13)

in which,

ℎ(𝑥) = 1 + 9
𝑛 − 1

𝑛
∑

𝑖=2
𝑥𝑖, with 𝑥𝑖 ∈ [0, 1], (14)

and 𝑛 = 7 in this study.
The optimization processes are shown in Fig. 7(a) for the weighted

EI method and Fig. 7(b) for the MOEI method. During the training pro-
cess, the MOEI method consistently maintains high predictive accuracy
for the second objective 𝑔(𝑥), and the predictive accuracy gradually
converges for the first objective 𝑓 (𝑥), reducing the prediction error by
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Fig. 6. Infill criteria of the model. The EI of 𝐶𝑇 and 𝐶𝐿 is partitioned into two components: exploration and exploitation. Through the employment of multi-AF weighted sum,
the respective sums of exploration and exploitation are obtained and optimized as two objectives within the multi-objective EI framework.
Fig. 7. The MAE prediction accuracy during active learning processes.
50% after 1000 training points. While for the weighted EI method,
it is obvious that the prediction error cannot converge for 𝑓 (𝑥) and
cannot significantly reduce for 𝑔(𝑥). The failure can be attributed to
the poor-quality points selected for the active learning.

3.2. Joint global optimization

A joint online optimization based on the MMGP model is further
established, as shown in Fig. 8. A total of 2260 low-fidelity data and
300 high-fidelity data are generated in this study. Both the high-fidelity
and low-fidelity data are used to construct the MMGP model, and a
randomly sampled test set with 50 high-fidelity data is used to estimate
prediction errors. The relative prediction error is measured as the ratio
of the MAE to the range of the corresponding output. The MAE of low-
fidelity and multi-fidelity are depicted in Fig. 9(a). A low-fidelity model
is initially trained by 2260 points, as indicated by the dark and light
blue lines. The Latin hypercube sampling is then employed to initialize
50–100 high-fidelity points serving as the foundation for the MMGP
model. The Bayesian optimization is subsequently utilized to train the
MMGP model till converge, as shown by the red and pink lines. With
a foundational set from the low-fidelity model, a rapid convergence is
observed in the multi-fidelity model, requiring only 10% of the training
points needed for the low-fidelity counterpart.

The self-adjust coefficient 𝛼, adjusting to create a balance between
the convergence of two outputs, is illustrated in Fig. 9(b) where the blue
line is for the low-fidelity and the red line is for the multi-fidelity. More-
over, a trend line is obtained through a 50-window moving average.
The increasing trend of the curve indicates the less convergence in the
output �̂�𝐿 at the early training stage, while the prediction error for the
output �̂�𝑇 increases in the later stage of training. These observations
illustrate the complex dynamics and trade-offs at play during the model
training processes.

Based on the training set, the correlations of parameters are eval-
uated and presented in Fig. 10. These relationships are evidenced by
all p-values being less than 0.05, from which it can be concluded that
the correlations are indeed significant. For the thrust coefficient 𝐶𝑇 ,
it exhibits significant positive correlations with the Strouhal number
St, heaving amplitude 𝑦0, and the maximum thickness 𝑡. In contrast,
the phase angle 𝜓 has a negative correlation with 𝐶𝑇 . For the lift
coefficient 𝐶𝐿, it shows strong positive correlations with the Strouhal
number St and maximum camber 𝑚, while the maximum thickness 𝑡
5

Fig. 8. Framework of joint optimization based on MMGP model.

and maximum camber position 𝑝 demonstrate a moderate influence and
negative correlations with 𝐶𝐿.

Furthermore, the sensitivity of 𝐶𝐿 and 𝐶𝑇 to variables are also
analyzed. The Sobol Global Sensitivity Analysis (GSA) is a variance-
based method to understand the importance of each input parameter
on a given output (Sobol, 2001). The method calculates two primary
metrics, the first-order sensitivity index 𝑆 and the total-effect sensitivity
index 𝑆𝑇 (Homma and Saltelli, 1996; Saltelli, 2002). The first-order
sensitivity index 𝑆𝑖 for the 𝑖th parameter is given by:

𝑆𝑖 =
Var𝑋𝑖 (E𝑋∼𝑖

(𝑌 |𝑋𝑖))
Var(𝑌 ) , (15)

and the total-effect index 𝑆𝑇𝑖 that measures the contribution to the
output variance of 𝑋𝑖 is defined as:

𝑆𝑇𝑖 = 1 −
Var𝑋∼𝑖

(E𝑋𝑖 (𝑌 |𝑋∼𝑖))
Var(𝑌 ) . (16)

In (15) and (16), Var and E denote variance and expectation respec-
tively, 𝑌 is the output, 𝑋𝑖 stands for the 𝑖th input parameter and
𝑋∼𝑖 denotes all parameters except the 𝑖th one. The index 𝑆𝑖 indicates
the contribution to the output variance of the main effect of input
parameter, independently reflects the impact of varying 𝑋𝑖. The index
𝑆𝑇 includes all variance caused by its interactions, of any order, with
𝑖
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Fig. 9. Changes of indicators MAE and 𝛼 in the training process.

Fig. 10. Correlation matrix about parameters.
6

Table 1
Relative prediction errors comparison among different models.

Relative prediction MMGP Single-fidelity model Single-fidelity model
error + MOEI (Low-fidelity data) (High-fidelity data)

Thrust coefficient 𝐶𝑇 1.96% 2.55% 2.73%
Lift coefficient 𝐶𝐿 2.84% 18.96% 21.46%

any other input variables, reflecting the interaction effect of input
parameters.

The results of the Sobol GSA are depicted in Fig. 11 and reveal
significant insights into the influence of geometry and motion param-
eters on 𝐶𝑇 and 𝐶𝐿. For the thrust coefficient 𝐶𝑇 , the phase angle
𝜓 is the most significant factor with a high 𝑆 = 0.3613 and 𝑆𝑇 =
0.6912. Conversely, the parameter 𝑝 is the least influential with 𝑆
closing to zero and 𝑆𝑇 = 0.1211, which suggests that 𝑝 mostly interacts
with other parameters to influence 𝐶𝑇 . For the lift coefficient 𝐶𝐿, the
heaving amplitude 𝑦0 and the pitching amplitude 𝜃0 stand out with
𝑆 = 0.0891 and 𝑆 = 0.0982, 𝑆𝑇 = 0.4873 and 𝑆𝑇 = 0.5209 respectively.
This suggests that the parameters have substantial and nearly equal
influence on 𝐶𝐿. Compared to the motion parameters, the geometry
parameters generally exhibit a weaker sensitivity. For instance, in the
case of 𝐶𝑇 , the most influential geometric parameter is the maximum
thickness 𝑡 with 𝑆 = 0.0367 and 𝑆𝑇 = 0.1428, which are significantly
smaller than the corresponding values for the most influential motion
parameter 𝜓 .

Overall, it can be concluded that there exists a hierarchy of im-
portance among the seven parameters. For the thrust coefficient 𝐶𝑇 ,
optimizing the phase angle 𝜓 would likely yield the most substantial
improvements. For the lift coefficient 𝐶𝐿, attention should be given
to both the heaving amplitude 𝑦0 and the pitching amplitude 𝜃0. Both
correlation and sensitivity analyses reveal that motion and geometry
parameters considerably influence the performance of the flapping foil.
Although motion parameters generally have a greater impact than
geometry parameters on both 𝐶𝑇 and 𝐶𝐿, the results show that the
geometry parameters dominate 22% and 35% of the sum effects on 𝐶𝑇
and 𝐶𝐿 respectively, suggesting the potential benefit of conducting a
joint optimization of motion and geometry parameters to enhance the
flapping foil performance.

The correlation analysis of two types of fidelity are also conducted.
We normalize all input variables and then select low-fidelity data points
that are closest to each high-fidelity point, eliminating those with
significant discrepancies. Notably, if the closest low-fidelity point is
distant from the high-fidelity point by a Euclidean distance (with a
threshold of 0.37) in the parametric space, that high-fidelity point is
excluded. Leveraging the familiar pair of the high-fidelity and low-
fidelity points, the linear correlations between them are compared, as
shown in Fig. 12. It is evident that there is a linear relationship between
high-fidelity and low-fidelity results. The linearity appears to be more
pronounced for 𝐶𝑇 , suggesting that the application of a linear prior
formula in the multi-fidelity model (Perdikaris et al., 2015) is effective.
The goodness of fit 𝑅2 with definition 𝑅2 = 1 − (𝑆𝑆𝐸∕𝑆𝑆𝑇 ) is used as
a statistical metric to measure how well the fitted model captures the
data (Ross, 2014). 𝑆𝑆𝐸 is sum of squared errors, representing the sum
of squares of the differences between the predicted and observed values
of the model. It measures the prediction error of the model. 𝑆𝑆𝑇 is
total sum of squares, representing the sum of squares of the difference
between the observed values and the mean of the observed data. It
represents the overall degree of data variability. The value of 𝑅2 closer
to 1 indicates a better fit. In this context, 𝑅2 is 0.7213 for 𝐶𝑇 , and is
0.6498 for 𝐶𝐿, indicating the quality of their fits to the respective data.

To illustrate the efficacy of the proposed method, results from the
trained model are presented in Table 1. It is essential to note that for the
MMGP model, the complete dataset was utilized. In contrast, the single-
fidelity model employed either the high-fidelity or the low-fidelity data
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Fig. 11. Sensitivity bar about variables.

Table 2
Global multi-objective optimization results.

St y0 𝜃0 𝜓 m p t �̂�𝑇 �̂�𝐿 C𝑇 C𝐿
0.93 0.33 35.12 59.71 4.46% 1.51% 25.50% 4.78 7.31 4.83 7.53
0.92 0.59 21.32 51.10 3.60% 1.17% 34.64% 6.49 7.28 6.54 7.82
0.98 0.59 37.87 5.10 6.35% 0.90% 29.31% 21.68 7.27 21.81 7.49
0.72 0.14 12.57 42.40 8.61% 6.15% 19.74% 1.42 10.98 2.79 2.17

from the comprehensive dataset, depending on the fidelity under con-
sideration. This distinction clearly shows that the prediction accuracy
of the MMGP model integrating two fidelities is significantly improved
compared with the single-fidelity model, and the prediction error is
reduced by 23%–28% for 𝐶𝑇 and 85%–87% for 𝐶𝐿 as known from
Table 1. Subsequently, the well-trained model is optimized through a
genetic algorithm, and the Pareto front under two objectives is obtained
as shown in Fig. 13.

The points on the Pareto front correspond to different combina-
tions of parameters and objective values, as shown in Table 2 with
7

a

Fig. 12. Correlations of different fidelities for 𝐶𝑇 and 𝐶𝐿.

�̂�𝑇 , �̂�𝐿 denoting predicted values from the MMGP model and 𝐶𝑇 ,
𝐶𝐿 denoting real values from high-fidelity simulations, providing a
powerful reference for the design of a flapping foil. A preliminary
analysis reveals a commendable congruence between the predicted and
real values, thereby affirming the robustness and reliability in capturing
the underlying physics of flapping foil dynamics by the MMGP model.
Moreover, the data highlights the performance variability attributable
to different parameter sets. For instance, certain configurations excel in
thrust, with 𝐶𝑇 reaching as high as 21.81, whereas others are optimized
or lift with 𝐶𝐿 being 7.82, respectively. Additionally, the sensitivity of
erformance metrics to minor variations in parameters like 𝑚, 𝑝, and 𝑡
s evident.

.3. Multi-objective configuration optimization

For the flapping foil, its motion trajectory is easy to change, while
he geometry parameters are relatively fixed. In different mission
tages, such as swimming in water or flying in air, biological beings

dopt different motion trajectories to achieve it (Chin and Lentink,
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Table 3
Prediction results of the BiGA.

Point m p t St 𝑦0 𝜃0 𝜓 �̂�𝑇 �̂�𝐿 𝐶𝑇 𝐶𝐿

A 4.46% 1.51% 25.5% 0.93 0.36 35.12 64.4 5.15 – 6.11 –
0.93 0.36 35.12 59.71 – 9.89 – 7.53

B 6.35% 0.90% 29.31% 0.98 0.59 37.87 5.1 21.65 – 21.81 –
0.98 0.60 38.27 60.0 – 9.16 – 9.25
Fig. 13. Pareto front (circle points, red online) obtained from optimization based on
MMGP model.

2016). Therefore, it is meaningful to design two different motion
trajectories for a same foil to achieve high lift and large thrust modes.
Based on the above well-trained MMGP model, a BiGA framework is
further designed to achieve this goal. As shown in Fig. 14, the outer
layer GA1 is responsible for selecting foil configurations, the last pop
of global optimization is recommended to be used as the initial pop
of GA1 to speed up the convergence. For each configuration, the inner
layer GA2 performs trajectory optimization based on the MMGP model,
with both thrust and lift being positive as boundary conditions, and
two groups of motion parameters with the maximum thrust and the
maximum lift are used as response values of GA1 input. Therefore,
an optimization framework is constructed in which three geometry
parameters serve as inputs, and the optimal thrust and lift of the
trajectories serve as outputs.

The optimization results, encapsulated across multiple generations
and graphically represented in Fig. 15, stand as a testament to the
dynamic and adaptable nature of the BiGA framework. To expedite con-
vergence, the high-performance points in the dataset are utilized as the
initial population. The Table 3 distinctly showcases the predicted (�̂�𝑇
and �̂�𝐿) and real (𝐶𝑇 and 𝐶𝐿) performance metrics of non-dominated
solutions (point A and B) in Fig. 15. The results demonstrate that
flexible switching between different motion modes for the same foil
allows the corresponding 𝐶𝑇 and 𝐶𝐿 to surpass the global optimum as
shown in Table 2. For instance, with parameters 𝑚 = 6.35%, 𝑝 = 0.90%,
and 𝑡 = 29.31%, the foil achieves a notable real thrust of 21.81 or
a lift of 9.25. Compared with point 𝐶𝑇 = 21.81 and 𝐶𝐿 = 7.49 in
Table 2, a equivalent performance can be maintained by point B on one
objective, while a 25% enhancement at least is observed on the other.
It further shows the efficacy of the proposed method in navigating the
complex design space, ultimately benefiting the design of amphibious
foils by delivering optimized performance metrics. Moreover, an in-
depth hydrodynamic analysis has also been carried out to understand
the physical mechanism of high thrust and high lift from the view of
the vorticity field. Detailed discussions are presented in Appendix B.
8

4. Concluding remarks

Leveraging the synergy of the multitask and multi-fidelity Gaussian
process model and the bi-level genetic algorithm optimization frame-
work, this study proposes a robust methodology for the optimization
of the flapping foil which is widely used in the bio-inspired equipment.
The core contributions can be summarized as follows:

1. We extend the capabilities of the MMGP model by integrating
the MOEI acquisition function. Through a rigorous test on the
ZDT1 function, we demonstrate the superior predictive accu-
racy of this acquisition function over traditional fixed-coefficient
methods. This is of importance for its application in more com-
plex optimization problems, such as the amphibious foil design.

2. We conduct a comprehensive data-driven analysis to explore
the relationship between input–output variables with different
fidelities. This understanding makes the design strategy more
nuanced and effective. The underlying mechanism of the opti-
mal configuration is also discussed through the fluid dynamic
analysis.

3. We propose a bi-level genetic algorithm framework for the joint
optimization of amphibious foil trajectory and shape. This not
only facilitates global optimization across both geometry and
motion parameters but also adapts to multi-objective shape op-
timization for various motion modal combinations, and provides
enhanced performance versatility for amphibious foils in diverse
environments.

The numerical results underscore the effectiveness and practical
utility of the proposed methodology. The present implementation in-
cludes 2260 low-fidelity and 300 high-fidelity data points, enhancing
the efficiency of the MMGP model. Owing to a notable linearity be-
tween high and low-fidelity data, 0.7213 for 𝐶𝑇 and 0.6498 for 𝐶𝐿, a
reduction of 23%–28% for 𝐶𝑇 , 85%–87% for 𝐶𝐿 in prediction errors
is obtained comparing with single-fidelity models. The sensitivity of
geometry and motion parameters to the output is analyzed, and it is
found that the geometry parameters contribute 22% on 𝐶𝑇 and 35% on
𝐶𝐿 of the sum effects respectively. By deploying the BiGA optimization,
the Pareto frontier is obtained. Compared with the global optimum,
by flexibly alternating between different motion modalities, a nearly
equivalent performance can be maintained on one objective, while a
25% enhancement at least is observed on the other.

Though the proposed method shows promising results, there are
still limitations and challenges. The parameterization of the motion
is somewhat rough, without taking into account the varying flow
fields experienced by the flapping foil or the bio-inspired robot during
navigation. For complicated designs, comprehensive training data sets
and considerable computational resources are still needed. Looking
ahead, we plan to delve into feedback control by harnessing flow
field characteristics through clustering. In addition, contemplation of
optimal flapping trajectories under varying flow fields is on the horizon,
aiming to equip the robot with the capability to adaptively adjust its
motion in response to the detected flow field, so as to optimize the
performance of acceleration, cruising, and deceleration phases.
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Fig. 14. Optimization framework of BiGA.

Fig. 15. Evolution of outer layer GA1 over 10 generations for 𝐶𝑇 and 𝐶𝐿.
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Table A.4
Calculation domain independence analysis.

Resolution Calculation domain 𝐶𝑇 𝐶𝐿

32 16𝐿 × 16𝐿 1.048 0.0393
32𝐿 × 32𝐿 1.061 0.0307

48 16𝐿 × 16𝐿 1.188 0.0283
32𝐿 × 32𝐿 1.223 0.0231

64 16𝐿 × 16𝐿 1.274 0.0242
32𝐿 × 32𝐿 1.275 0.0247

80
16𝐿 × 16𝐿 1.271 0.0256
32𝐿 × 32𝐿 1.295 0.0309
64𝐿 × 64𝐿 1.298 0.0303

96
16𝐿 × 16𝐿 1.290 0.0273
32𝐿 × 32𝐿 1.297 0.0304
64𝐿 × 64𝐿 1.300 0.0303
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Appendix A. Validations and convergence tests

To demonstrate the effectiveness of the simulation platform, val-
idation cases are configured to align with the settings and motion
described in Zheng et al. (2019). The parameters in the simulation
is set as follows, St = 0.25, 𝑦0 = 1, 𝜃0 = 30◦, 𝜓 = −𝜋∕2 and Re =
1100 for a NACA0015 foil. The accuracy of numerical simulation often
depends on the discretization of space and time, so convergence tests
are implemented. As mentioned above, the grid resolution is defined
as the number of grid points per chord length in this study. A range of
grid densities from coarse to fine is simulated to identity the influence
on numerical results, or rather on the thrust and lift coefficients of the
flapping foil.

The Table A.4 presented in this study displays the impact of resolu-
tion on the thrust and lift coefficients across two distinct calculation
domains. In each calculation domain, the resolution varies from 32
to 96. It is evident that as the resolution increases, the thrust coeffi-
cient exhibits an upward trend, while the lift coefficient experiences
a downward trend in both calculation domains. Furthermore, these
further investigations revealed that for lower resolutions (64 and less),
the calculation domain converges at 16𝐿 × 16𝐿. However, for higher
resolutions (above 64), convergence is achieved at 32𝐿 × 32𝐿.
10
Fig. A.16. Comparisons of instantaneous thrust and lift coefficients for different
resolution settings with those in Zheng et al. (2019). 𝜏 is the dimensionless time that is
non-dimensionalized by the flapping period 𝑇 , and the calculation domain is 16𝐿×16𝐿.

The thrust and lift coefficients under different resolutions are com-
pared as shown in Fig. A.16. The resolution ranges from 32 to 80,
and the reference solution is obtained from the aforementioned study
(Zheng et al., 2019). It is observed that the thrust coefficient demon-
strates a gradual convergence as the resolution increases, with dimin-
ishing differences between solutions. Notably, there is virtually no
difference between the resolutions of 64 and 80, indicating that a
resolution of 64 achieves convergence. Likewise, the lift coefficient also
displays a similar convergence behavior, albeit with smaller differences
between solutions compared to the thrust coefficient. Based on these
findings, a resolution of 64, 16𝐿 × 16𝐿 is adopted for this study as
it strikes a reasonable balance between accuracy and computational
efficiency, making it a practical choice for further analysis.

For the temporal resolution, the time step in LilyPad is chosen to
be adaptive in order to ensure the explicit stability of convection and
diffusion terms. An adaptive time step (d𝑡 = 1∕max |𝐮| + 3𝜈) is used to
ensure stability. This allows the time step to be automatically adjusted
based on the fluid velocity 𝐮 and viscosity 𝜈, adapting to different
situations. The use of an adaptive time step, along with the Semi-
Lagrangian method, is of help to maintain stability while balancing
computational efficiency and accuracy (Weymouth, 2015).

Table A.5 shows the thrust coefficient, and lift coefficient values for
different time steps. Upon a comparative analysis of these time step
sizes, an obvious trend is observed in the changes of thrust coefficient
and lift coefficient. For instance, as the time step is reduced from
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Table A.5
Time step independence analysis with calculation domain 16𝐿 × 16𝐿 and resolution of
64. The variable d𝑡 represents the default adaptive time step in Lilypad.

Time step 𝐶𝑇 𝐶𝐿
1.5d𝑡 1.232 0.0144
d𝑡 1.274 0.0242
0.5d𝑡 1.271 0.0284

Fig. A.17. Comparisons of instantaneous thrust and lift coefficients for different time
settings with those in Zheng et al. (2019). 𝜏 is the dimensionless time, the calculation
domain is 16𝐿 × 16𝐿 and the resolution is 64.

1.5d𝑡 to d𝑡, the thrust coefficient increases from 1.232 to 1.274, while
the lift coefficient decreases from 0.0144 to 0.0242. As the time step
is further reduced to 0.5d𝑡, the change of thrust and lift coefficient
becomes smaller gradually, with thrust coefficient being 1.271 and lift
coefficient being 0.0284. It is known that the thrust and lift coefficients
are 1.275 and 0.0291 respectively in Zheng et al. (2019). Fig. A.17
shows the thrust and lift coefficient curves for different time settings,
compared with those in Zheng et al. (2019), and a good agreement can
be observed for cases of d𝑡 and 0.5d𝑡.

Table A.5 and Fig. A.17 indicates that when the time step decreases
to d𝑡, the result begins to converge. Further reducing the time step
will only result in minimal changes in thrust and lift coefficients,
corroborating the efficacy of the chosen adaptive time step d𝑡. This
confirms a balance between computational efficiency, accuracy, and
stability, eliminating the need for further reduction for the temporal
resolution.
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Appendix B. Flow field analyses

An in-depth hydrodynamic analysis is carried out for the geometry
configuration at Point B in Table 3. As shown in Fig. B.18, the in-
stantaneous thrust and lift curves, along with vorticity fields at crucial
instants, are presented for the high thrust mode with [St, 𝑦0, 𝜃0, 𝜓] =
[0.98, 0.59, 37.87, 5.1], and for the high lift mode with [St, 𝑦0, 𝜃0, 𝜓] =
[0.98, 0.60, 38.27, 60.0].

Vorticity fields for the thrust

The left side of Fig. B.18 is depicted for the high thrust mode.
As shown in subplot (a), the foil begins its downward locomotion,
producing several trailing edge vortexes (TEV) that revolve clockwise
above the foil, and the volume of clockwise TEV at the trailing edge
increases. At the same time, the angle of attack (AOA) diminishes, and
the form drag decreases, resulting in an increasing thrust coefficient.
From subplot (b), the thrust generated by the TEV becomes dominant,
and the thrust coefficient increases, peaking at 𝜏 = 0.113 as illustrated.

As demonstrated in subplots (c-e), the foil continues to flap down-
ward, the AOA decreases, and form drag increases. Although the thrust
coefficient decreases, it remains positive. In subplot (e), as the foil
starts to flap upward, the form drag gradually decreases, and the thrust
coefficient increases. A small counterclockwise rotating vortex, located
beyond the leading edge, begins to shed. The shedding of the leading
edge vortex (LEV) combines with the TEV, forming a larger TEV, which
continues to grow. The thrust generated by this combined TEV leads to
a gradual increase in the thrust coefficient, reaching its maximum at
𝜏 = 0.470, as depicted in subplots (e-g).

As the TEV moves away from the foil, decreasing the horizontal
velocity component of the jet generated by the TEV. As illustrated in
subplot (h), the thrust coefficient declines significantly.

Throughout the flapping cycle, the foil leverages the balance of
vortex dynamics, primarily the TEV, to generate thrust. During the
downward locomotion, the negative thrust arises from the increased
form drag due to the AOA. Conversely, the interaction between the
foil and the TEV transitions the thrust to positive values. This positive
thrust remains dominant for an extended duration, primarily due to the
continuous locomotion and the reinforcing behavior of the TEV. The
combined effects result in sustained high thrust throughout the flapping
period.

Vorticity fields for the lift

As shown in subplot (i), the foil begins its upstroke, causing the fluid
to start rotating around the leading edge, creating an initial clockwise
vortex. In subplot (j), the clockwise vortex beneath the leading edge
hinders the flow of a pair of leading-edge vortices, thereby reducing
the flow velocity. This makes a sudden decrease in the fluid pressure
difference, consequently decreasing the lift.

In subplot (m)–(n), the foil ends its upstroke. The clockwise vortex
reinforces and detaches from the leading edge, moving toward the
trailing edge. This temporarily decelerates the fluid below the foil,
increasing the pressure difference between the upper and lower sides,
and slowing down the lift decreasing.

In subplot (o)–(p), as the AOA continues to increase, several clock-
wise vortexes start to form above the trailing edge, accelerating the
fluid above the foil and increasing the pressure difference between the
upper and lower sides, This vortex cancels out the previous counter-
clockwise vortex, helping to restore lift generation, preparing for the
next flapping cycle.

The investigations of the interaction between the flapping foil,
vortices, and lift generation emphasize that vortex dynamics and the
pressure difference are the key factors affecting lift change. Especially
in the process of transition from subplot (j), the forms of a pair of larger
vortex structures below the foil may be the main reason for the high
lift at the flapping process, consequently increasing the lift.
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Fig. B.18. Instantaneous lift and thrust curves, along with vorticity fields at crucial instants for the geometry configuration at Point B, left for the high thrust mode and right for
the high lift mode. The color bar below represents the vorticity magnitude.
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