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A B S T R A C T

Fitness functions of real-world optimization problems often need to be analyzed by expensive experiments
or numerical simulations. Integrating these expensive simulations or experiments directly into optimization
algorithms would result in substantial computational costs. Surrogate-assisted evolutionary algorithms (SAEAs)
have attracted massive attention recently due to their high efficiency and applicability in solving real-
world optimization problems. As the dimension of the optimization problem increases, the computational
cost of constructing surrogates increases, and the surrogate model’s prediction accuracy may be severely
degraded. High-dimensional model representation (HDMR) is a promising technique to partition a high-
dimensional function into low-dimensional component functions. However, HDMR’s hierarchical structure
limits its applicability in online SAEAs. To address these problems, this paper develops a surrogate-assisted
evolutionary algorithm with hierarchical surrogate technique and adaptive infill strategy (SAEA-HAS). In
this work, we propose a novel hierarchical surrogate technique, in which a composite surrogate model is
constructed by the first-order HDMR model and an error value-based surrogate model, then, using the internal
contrastive analysis method, a hierarchical surrogate model (HSM) combining the composite surrogate with
the fitness value-based surrogate is established. In addition, an adaptive infill strategy is developed to balance
the exploration and exploitation of the surrogate-assisted evolutionary search. Various test functions and an
antenna optimization problem are employed to compare SAEA-HAS with several well-known SAEAs. The
experimental results validate the effectiveness of SAEA-HAS.
1. Introduction

Evolutionary algorithms (EAs) have been widely applied in solving
real-world optimization problems (Bi, Xue, & Zhang, 2021; Chen, Li,
Cui, et al., 2020; Gao, Wang, Yu, & Yue, 2022; Hong, Cui, & Chen, 2021;
Lan et al., 2022). Traditional EAs are developed on the assumption
that the objective function is explicit and the fitness evaluations (FEs)
are cheap (Li, Zhan & Zhang, 2022a). However, objective functions of
many real-world optimization problems are usually implicit and the
fitness evaluations are based on high-fidelity numerical simulations or
physical experiments (Li, Chen, Cui, Song & Chen, 2022; Liu, Liu, &
Jin, 2022). Thus, traditional EAs cannot handle real-world optimiza-
tion problems. Surrogate-assisted evolutionary optimization algorithms
(SAEAs) employ a certain amount of FEs and computationally cheap
surrogate models to drive EAs, which has been shown to be effective in
solving implicit and expensive real-world optimization problems (Jin,
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Wang, Chugh, Guo, & Miettinen, 2019; Li, Zhan, Wang & Zhang, 2020;
Wang, Feng, Jin, & Doherty, 2021; Wu, Yu, & Liang, 2023). Depending
on whether additional real FEs can be obtained during optimization,
the existing SAEA algorithms can be classified into two categories:
offline SAEAs and online SAEAs. Offline SAEAs are developed on
the assumption that no additional real FEs can be obtained during
optimization (Huang & Wang, 2021). Because only the historical data
set is available or the computational cost of simulation is too high, in
some complex real-world offline optimization problems, including the
trauma system design problem (Wang, Jin, & Jansen, 2016), the mag-
nesium furnace optimization problem (Guo, Chai, Ding, & Jin, 2016),
the blast furnace design optimization problem (Chugh, Chakraborti,
Sindhya, & Jin, 2017), the airfoil shape optimization problem (Andrés-
Pérez et al., 2019) and the underwater robot design problem (Chen,
Li, Cui, Yang, & Chen, 2021), no additional real FEs can be provided.
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Offline SAEAs cannot add new sample points during optimization to
improve the model accuracy, which makes offline SAEAs more com-
plicated than online SAEAs. On the contrary, online SAEAs are based
on the assumption that the real fitness values of a certain amount of
new samples can be evaluated during optimization (Cui, Li, Zhou, &
Abusorrah, 2022; Zhen, Gong, Wang, Ming, & Liao, 2021; Zhou, Ong,
Nguyen, & Lim, 2005).

Surrogate models are undoubtedly a key research direction in
SAEAs. Most parts of SAEAs, including model construction, fitness
evaluation and model updating, are related to surrogate models (Tong,
Huang, Minku, & Yao, 2021). Many surrogate models such as Response
Surface Method (Box, Hunter, Hunter, et al., 1978), Radial Basis
Function (Hardy, 1971), Kriging (Sacks, Welch, Mitchell, & Wynn,
1989), Multivariate Adaptive Regression Splines (Friedman, 1991),
Support Vector Regression (Cristianini, Shawe-Taylor, et al., 2000) and
Artificial Neural Network (Hassoun et al., 1995; Vt & Shin, 1994) can be
used in SAEAs. In addition to those stand-alone surrogate models, many
ensembles of surrogates have been proposed to improve the surrogate
robustness and accuracy (Goel, Haftka, Shyy, & Queipo, 2007). Due
to the high robustness, ensembles of surrogates are widely used to
build the global surrogate in SAEAs. Combining various ensembles of
surrogates with adaptive surrogate selection criteria, Yu, Li, and Liang
(2020) developed an adaptive surrogate model-based evolutionary
algorithm. As the dimension increases, the model construction cost of
ensembles of surrogates increases dramatically, which will decrease the
efficiency of the SAEA framework (Chen, Li, Cui, & Liu, 2022). High-
dimensional model representation (HDMR) (Shan & Wang, 2010) is
a promising technique to partition a high-dimensional function into
low-dimensional component functions. Various HDMRs models such
as analysis of variance-based HDMR (ANOVA-HDMR) (Rabitz & Aliş,
1999), cut point-based HDMR (cut-HDMR) (Rabitz, Aliş, Shorter, &
Shim, 1999) and random sampling HDMR (RS-HDMR) (Li et al., 2006)
have been proposed in terms of the choice of different projection
operators. The cut-HDMR technique has been widely combined with
surrogate models for function approximation and global optimization
due to its advantages of easy construction and high precision (Jiang,
Yang, Wang, Miao, & Bai, 2021; Li & Wang, 2016; Li, Wang, &
Ye, 2016; Liu, Hervas, Ong, Cai, & Wang, 2018; Mukhopadhyay,
Dey, Chowdhury, Chakrabarti, & Adhikari, 2015; Wu, Peng, Chen, &
Zhang, 2019; Zhang, Wang, Dong, & Li, 2020). Many surrogate models
can be employed to approximate component functions in the cut-
HDMR expansion (Yue, Zhang, Gong, Luo, & Duan, 2021). However,
cut-HDMR’s hierarchical structure limits its applicability in online
surrogate-assisted evolutionary optimization (Cai, Gao, & Li, 2019) be-
cause the construction of the cut-HDMR model requires the structured
sampling method such as the dividing rectangles (DIRECT) sampling
method (Chen, Wang, Ye, & Hu, 2019), in which the training points
are sampled in a specific way. Therefore, once the cut-HDMR-based
surrogate model is constructed, the newly filled sample points cannot
be used to directly update the cut-HDMR-based surrogate model. All the
above surrogate techniques are regression-based models that directly
model the relationship between design variables and the fitness func-
tion. In recent years, some classification-based surrogate models are
developed (Lu, Tang, & Yao, 2011; Ziegler & Banzhaf, 2003). Different
from regression-based surrogate models, classification-based surrogate
models only use the comparison results between individuals and the
reference point. Lu et al. (2011) developed a classification-based SAEA
framework for solving single-objective optimization problems using
a differential evolution algorithm, in which the soft-margin support
vector classification (Chen, Wu, Ying, & Zhou, 2004) is adopted as the
classifier. The parent is chosen as the current generation’s reference
solution for each offspring.

In addition to the surrogate model, the core research contents of
offline SAEAs include two aspects. The first is to improve the amount
of available offline data to improve the model accuracy, especially
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when the offline data set is small. In general, the more offline data,
the better the prediction performance of the surrogate model can be
achieved (Wang, Jin, Sun, & Doherty, 2018). Some methods of increas-
ing the amount of offline data have been proposed in recent years, such
as artificial data generation (Farzaneh & Mahdian Toroghi, 2019) and
localized data generation (Li, Zhan, Wang, Jin & Zhang, 2020). The
other research content is to develop effective offline surrogate model
management strategies (Huang, Wang, & Jin, 2021; Huang, Wang, &
Ma, 2019; Wang et al., 2018; Zhen, Gong, & Wang, 2022) to guide the
evolutionary search. For online SAEAs, except those research focuses
included in offline SAEAs, how to select the most potential candidate
solution during optimization and update the surrogate with its true
fitness value (Known as infill sampling criteria (Li, Gao, Garg, Shen, &
Huang, 2021a)) is also a key research content of online SAEAs. In gen-
eral, there are two types of infill criteria, the performance-based infill
strategy and the uncertainty-based infill strategy. The performance-
based criteria (Jin, Olhofer, Sendhoff, et al., 2000) evaluates the actual
objective values of individuals with the minimum predicted value in the
population, which can enhance the exploitation performance of surro-
gates in the promising area. However, previous research has shown that
the performance-based infill strategy may cause the SAEA to converge
prematurely (Razavi, Tolson, & Burn, 2012). Since Kriging model can
give the prediction variance, various Kriging-based uncertainty infill
strategies have been developed in online SAEAs to balance the explo-
ration and exploitation during optimization, including the probability
of improvement (PoI) (Zhou, Ong, Nair, Keane, & Lum, 2006), expected
improvement (ExI) (Emmerich, Giannakoglou, & Naujoks, 2006) and
lower confidence bound (LCB) (Liu, Grout, & Nikolaeva, 2017). In
addition to the Kriging model, the minimum distance to training sam-
ples (Li, Zhang, Sun & Han, 2019), and the discrepancy of predictions
from the ensemble of surrogates (Li, Cai & Gao, 2019) can also be
employed to provide the uncertainty information.

Many recent studies have focused on combining accurate surrogate
models with efficient infill sampling strategies to assist EAs. Wang,
Jin, and Doherty (2017) developed a committee-based active learning
method for surrogate-assisted particle swarm optimization, in which
the uncertainty-based and performance-based infill strategies are used
simultaneously. Both two strategies are based on the ensemble of
surrogates to search for the solution with the maximum uncertainty and
the best solution with the minimum predicted fitness value. Fu, Sun,
Tan, Zhang, and Jin (2020) developed a surrogate-assisted evolutionary
optimization algorithm using a random feature selection approach
(SAEA-RFS), in which the optimization problem is optimized by sequen-
tially optimizing several sub-problems that are formed with the random
feature selection. Li, Gao, Garg, Shen, and Huang (2021) collabora-
tively used convergence-based and diversity-based strategies to select
promising solutions for real fitness evaluations. Liu, Wu, Lin, Ji, and
Wong (2021) proposed an efficient SAEA with an uncertainty grouping-
based infill sampling criteria (SAEA-UGC), in which the prediction
difference among surrogates is adopted as the uncertainty information
to select the promising solution. Then the updated ensemble of sur-
rogates is applied for global search and a reconstructed RBF model
is responsible for the local search. Yu, Liang, Wu and Yang (2022)
developed a heterogeneous ensemble surrogate-driven neighborhood
field optimizer (HESNFO), in which both the accuracy and diversity of
surrogate models are considered to speed up the convergence process. A
two-fold infill sampling strategy is proposed to balance the exploration
and exploitation of HESNFO. Combining a Lipschitz-based surrogate
with a differential evolution-based optimizer, Kudela and Matousek
(2023) proposed a novel Lipschitz surrogate model-assisted differential
evolution algorithm (LSADE). Yu, Liang, Zhao and Wu (2022) presented
a novel adaptive surrogate model management strategy using multiple
RBF parallel modeling method for online SAEA (aRBF-NFO).

In this work, a surrogate-assisted evolutionary algorithm with hier-
archical surrogate technique and adaptive infill strategy (SAEA-HAS) is
developed. The proposal of hierarchical surrogate technique is based on

the following two motivations. First, although many valuable surrogate
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models in machine learning have been used in SAEAs, the prediction
accuracy of these surrogates decrease dramatically when the dimension
increases, which will decrease the convergence of SAEAs. HDMR is a
promising technique to partition a high-dimensional function into low-
dimensional component functions, this technique has been widely used
in function approximation due to its advantages of easy construction
and high precision. Second, HDMR’s hierarchical structure limits its
applicability in online SAEA, because the construction of the HDMR
model requires the structured sampling method. The newly filled sam-
ple points cannot be used to directly update the HDMR-based surrogate
model. Therefore, to inherit the advantages of HDMR model and bridge
the gap between HDMR and online SAEAs, this paper presents for
the first time the error value-based surrogate to characterize the error
relationship between the HDMR-based surrogate and the real fitness
function, it can be updated using newly filled samples during optimiza-
tion. As a result, by combining first-order HDMR model and the error
value-based surrogate model, the proposed composite surrogate model
can be integrated into online SAEAs. Thus breaking the barrier between
the HDMR-based surrogate modeling and online SAEAs.

The training database in SAEA-HAS is divided into two data sub-
sets. The first training subset is generated by the structured sampling
method for building the first-order cut-HDMR-based surrogate model.
The second training subset is employed to perform the contrastive
analysis. The prediction accuracy of cut-HDMR-based surrogate models
is unsatisfactory when approximating functions with a large number of
high-order interactions between input variables. Therefore, an internal
contrastive analysis method is proposed to establish the hierarchical
surrogate model (HSM) by combining the composite surrogate with
the fitness value-based surrogate, which can enhance the robustness
of the SAEA-HAS for different optimization problems. The radial basis
function (RBF) model (Hardy, 1971) widely used in SAEAs is em-
ployed in this paper to build the first-order cut-HDMR model and the
error value-based surrogate due to its high accuracy and efficiency.
Then an adaptive infill strategy is proposed to update the HSM dur-
ing optimization and balance the exploration and exploitation of the
surrogate-assisted evolutionary search. In the adaptive infill strategy,
the individual with the minimum predicted value in each iteration is
evaluated using the real fitness function to help the surrogate refine the
current promising area. Then a mutation operator is designed to assist
the exploration and exploitation of the proposed SAEA. The designed
mutation operator is applied to the best individual to generate a new
individual. The two new individuals evaluated by the real fitness func-
tion are used to update the HSM. The cut-HDMR-based surrogate model
can be efficiently integrated into online SAEAs for optimization using
the hierarchical surrogate technique and the adaptive infill strategy.

The main contributions of this paper are highlighted as follows.

• A novel hierarchical surrogate technique is proposed, in which
a composite surrogate model is constructed by the first-order
HDMR model and an error value-based surrogate model. Then,
using the internal contrastive analysis method, a hierarchical sur-
rogate model is established by combining the composite surrogate
with the fitness value-based surrogate. The infill points generated
during optimization in SAEA can be used to update the HSM,
breaking the barrier between the cut-HDMR-based surrogate mod-
eling and online SAEAs.

• An adaptive infill strategy is developed to update the hierarchical
surrogate model and enhance the exploration and exploitation
abilities of the surrogate-assisted evolutionary search.

The remainder of this paper is organized as follows, the prior
knowledge related to the HDMR and RBF models is introduced in
Section 2. Details of the proposed SAEA-HAS are presented in Section 3.
Section 4 gives the experimental setting and results analysis of test
functions and an antenna optimization problem. Finally, Section 5 gives
the concluding remarks.
3

2. Related work

2.1. High-dimensional model representation (HDMR)

In HDMR, a hierarchical function expansion according to design
variables is employed to estimate the fitness function:

𝑓 (𝑥) = 𝑓0 +
𝐷
∑

𝑖=1
𝑓𝑖(𝑥𝑖) +

∑

1≤𝑖<𝑗≤𝐷
𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 )

+
∑

1≤𝑖<𝑗<𝑘≤𝐷
𝑓𝑖𝑗𝑘(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘)

+⋯ + 𝑓12⋯𝐷(𝑥1, 𝑥2,… , 𝑥𝐷)

(1)

Where 𝑓0 represents the zero-order component function, indicating the
mean value of 𝑓 (𝑥) over the design domain. The first-order function
𝑓𝑖(𝑥𝑖) represents the contribution of design variable 𝑥𝑖 to the output
𝑓 (𝑥). 𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) is the second-order term, indicating the cooperative
ontribution of design variables 𝑥𝑖, 𝑥𝑗 to 𝑓 (𝑥). The high-order compo-
ent functions denote the interacting effects of an increasing number
f design variables to 𝑓 (𝑥). 𝑓12⋯𝐷(𝑥1, 𝑥2,… , 𝑥𝐷) reflects any residual

interacting effects of all design variables to 𝑓 (𝑥). To reduce computa-
tional cost and keep the tolerable prediction accuracy, the expansion
of HDMR to the second order is generally considered sufficient to
represent the output (Shan & Wang, 2010).

𝑓 (𝑥) ≈ 𝑓0 +
𝐷
∑

𝑖=1
𝑓𝑖(𝑥𝑖) +

∑

1≤𝑖<𝑗≤𝐷
𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) (2)

The expansion of cut-HDMR is an exact representation of the re-
ponse 𝑓 (𝑥), so the underlying problem can be transformed into an
xplicit function of low-order correlations. This approach is indepen-
ent of the choice of the cut point x𝑐 , which is usually chosen within the
omain of interest in the input space. The structure of each component
unction in cut-HDMR expansion is as follows:

0 = 𝑓 (x𝑐 ) (3)

𝑓𝑖(𝑥𝑖) = 𝑓 (𝑥𝑖, x𝑖𝑐 ) − 𝑓0 (4)

𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) = 𝑓 (𝑥𝑖, 𝑥𝑗 , x𝑖𝑗𝑐 ) − 𝑓𝑖(𝑥𝑖) − 𝑓𝑗 (𝑥𝑗 ) − 𝑓0 (5)

Where 𝑥𝑐 represents the cut point that is usually selected at the center
of design space, 𝑓0 is the real fitness value of x𝑐 . x𝑖𝑐 represents the cut
point without the 𝑖th dimension, and x𝑖𝑗𝑐 indicates the cut point without
dimensions 𝑖, 𝑗. The first-order function 𝑓𝑖(𝑥𝑖) is calculated along its
th design variable axis (i.e., the 𝑖th, cut line) through the cut point.
he second-order term is calculated in a plane defined by the design
ariables 𝑥𝑖, 𝑥𝑗 . The cut-HDMR ignores higher-order terms, assuming
hat after accounting for the effects of individual input variables and
heir lower-order correlations, the effects of higher-order correlations
re small (Liu et al., 2018).

.2. Radial basis function model (RBF)

The RBF model is widely used in SAEAs due to its high accuracy
nd efficiency. RBF model is especially suitable for problems with high
imensions because the modeling time of the RBF model increases
nsignificantly with the dimension. Assume that the training data set
(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, 2,… ,𝐻} is constructed by 𝐻 samples with 𝐷 dimension,
he expression of RBF model is shown below:

̂(𝑥) =
𝐻
∑

𝑗=1
𝑤𝑗𝜙(

‖

‖

‖

𝑥 − 𝑥𝑗
‖

‖

‖

) (6)

Where 𝜙(⋅) denotes the kernel function, ‖⋅‖ refers to the Euclidian norm
and 𝑤𝑗 is the weight of the 𝑗th kernel function. The Gaussian kernel
function expressed in Eq. (7) is employed in this work.

𝜙(𝑥) = exp(−𝑥
2
) (7)
2𝛿2
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Fig. 1. Diagram of the SAEA-HAS.
Where 𝛿 refers to the Gaussian function’s hyper-parameter. The RBF
model can be built quickly when the training data and the hyper-
parameter are given. The weight 𝑤 is calculated as follows:

𝑤 =
[

𝜙(‖‖
‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

)
]−1

𝐻×𝐻
𝐹 (𝑖, 𝑗 = 1, 2,… ,𝐻) (8)

Where 𝐹 =
[

𝑓1, 𝑓2,… , 𝑓𝐻
]𝑇 is the real fitness vector of the training set,

[

𝜙(‖‖
‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

)
]

𝐻×𝐻
represents kernel matrix of the training data set.

3. Proposed SAEA-HAS algorithm

3.1. Framework of SAEA-HAS

The diagram of SAEA-HAS is depicted in Fig. 1, the training database
consists of two data subsets. The first training subset 𝐷𝑆1 is generated
by the modified DIRECT sampling method, which is used to construct
the first order RBF-HDMR model. Then 𝐷𝑆1 is employed to build the
error value-based RBF model, which is used to characterize the error
relationship between the first-order RBF-HDMR and the real fitness
function. Then a composite surrogate model is built by combining
the first-order RBF-HDMR and the error value-based RBF model. The
prediction accuracy of cut-HDMR-based surrogate models is unsatisfac-
tory when real fitness functions include many high-order interactions
between input variables. Therefore, an internal contrastive analysis
method is proposed to establish the HSM by combining the composite
surrogate with the fitness value-based RBF model, which can enhance
the robustness of the SAEA-HAS for different optimization problems.
The second training subset 𝐷𝑆2 is generated by the Latin Hypercube
Sampling (𝐿𝐻𝑆) technology (Loh, 1996). 𝐷𝑆2 is employed to perform
the contrastive analysis.

After the HSM is determined, the database is updated with the two
training data subsets 𝐷𝑆1 and 𝐷𝑆2. Find the best individual in the
database, and set it to the current best individual. A generic genetic
algorithm (GA) is adopted as the optimization algorithm. Simulated
binary crossover (SBX) and polynomial mutation are used to produce
offspring. The HSM is used to predict the fitness values in the current
population; the 𝑁𝑝 individuals with smaller predicted fitness values
are selected to update the population. Then the adaptive infill strat-
egy is employed to add new points to enhance the exploration and
exploitation abilities of the surrogate-assisted evolutionary search and
refine the HSM. Finally, the HSM is updated with the infill points
for the next iteration. If the composite surrogate is selected in the
HSM, the infill points are used to update the error value-based RBF
4

surrogate. When the number of extra real fitness evaluations reaches
the maximum number, the proposed SAEA-HAS will output the optimal
solution. The pseudo-code of the overall framework of SAEA-HAS is
shown in Algorithm 1.

Algorithm 1 The framework of SAEA-HAS.
Input: Size of training set 2 𝑁𝑠2, Population size 𝑁𝑝, Dimension of

design space 𝐷, Upper and Lower bounds of design space 𝑋𝑈 , 𝑋𝐿,
Maximum number of extra fitness evaluations 𝑁𝑚𝑓 , Crossover and
Mutation probabilities 𝑝𝑐 , 𝑝𝑚, Cut point x𝑐 , Sampling factor 𝛽, Con-
vergence criteria 𝜀1, Real fitness function 𝑓 , Parameter vector of
RBF model 𝜂.

1: First-order RBF-HDMR modeling (x𝑐 , 𝛽, 𝜀1, 𝑓 , 𝜂, 𝑋𝑈 , 𝑋𝐿, 𝐷). [Refer
to algorithm 2].

2: Obtain first-order RBF-HDMR model 𝑓 1(𝑥) and training data set 1
𝐷𝑆1.

3: Hierarchical surrogate modeling (𝑁𝑠2, 𝐷𝑆1, 𝐷𝑆2, 𝜂, 𝑓 1(𝑥), 𝑋𝑈 , 𝑋𝐿,
𝐷). [Refer to algorithm 3].

4: Obtain hierarchical surrogate model 𝑓 (𝑥).
5: Initialize the database 𝐷𝐵 = [𝐷𝑆1; 𝐷𝑆2].
6: Find the best individual 𝑥𝑑𝑏1 in the 𝐷𝐵. The current best individual

𝑥𝑏 = 𝑥𝑑𝑏1.
7: 𝑐𝐹𝐸𝑠 = 0.
8: while 𝑐𝐹𝐸𝑠 < 𝑁𝑚𝑓 do
9: Generate the offspring 𝑃𝑜𝑝𝑠. 𝑃𝑜𝑝 = [𝑃𝑜𝑝; 𝑃𝑜𝑝𝑠].

10: Estimate fitness values of the 𝑃𝑜𝑝 using 𝑓 (𝑥).
11: Sort the 𝑃𝑜𝑝 in terms of the estimated fitness values and select the

best 𝑁𝑝 individuals. The best 𝑁𝑝 individuals are used to update
𝑃𝑜𝑝 such that 𝑃𝑜𝑝 remains a fixed number during iterations.

12: Adaptive infill strategy (𝑃𝑜𝑝(1), 𝐷𝐵, 𝐷, 𝑐𝐹𝐸𝑠, 𝑁𝑚𝑓 ). [Refer to
algorithm 4].

13: Update 𝑓 (𝑥) with the infill points.
14: end while
Output: The optimal solution.

3.2. First-order RBF-HDMR modeling

The first-order RBF-HDMR meta-modeling technique attempts to use
RBF to construct a cut-HDMR model based on the modified DIRECT
sampling method (Yue et al., 2021). The main sampling criteria of
the modified DIRECT sampling method are as follows. First, the initial
sample points are set at each variable range’s upper and lower limits,
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Algorithm 2 First-order RBF-HDMR modeling.
Input: x𝑐 , 𝛽, 𝜀1, 𝑓 , 𝜂, 𝑋𝑈 , 𝑋𝐿, 𝐷.
1: Evaluate the fitness of x𝑐 as 𝑓0.
2: for 𝑖 = 1 ∶ 𝐷 do
3: Add two end points (𝑥−𝑖 , x

𝑖
𝑐 ), (𝑥

+
𝑖 , x

𝑖
𝑐 ) along the 𝑖𝑡ℎ cut line and

evaluate their first-order fitness values 𝑓𝑖(𝑥−𝑖 ) = 𝑓 (𝑥−𝑖 , x
𝑖
𝑐 ) −

𝑓0, 𝑓𝑖(𝑥+𝑖 ) = 𝑓 (𝑥+𝑖 , x
𝑖
𝑐 ) − 𝑓0.

4: Add (𝑥−𝑖 , x
𝑖
𝑐 ), (𝑥

+
𝑖 , x

𝑖
𝑐 ) to the first-order training set {𝑋1

𝑖 , 𝑌
1
𝑖 } and

construct the 𝑖𝑡ℎ first-order RBF model 𝑓𝑖(𝑥𝑖) ← {𝑋1
𝑖 , 𝑌

1
𝑖 }.

5: Randomly generate a sample point (𝑥𝑟𝑖 , x
𝑖
𝑐 ) along 𝑖𝑡ℎ cut line and

evaluate the 𝑓𝑖(𝑥𝑟𝑖 ) = 𝑓 (𝑥𝑟𝑖 , x
𝑖
𝑐 ) − 𝑓0.

6: Evaluate 𝑐𝑟1, 𝑐𝑟2, 𝑐𝑟3 by Eqs. (9-11). Add (𝑥𝑐𝑖 , 𝑓𝑖(𝑥
𝑐
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 },

construct 𝑓𝑖(𝑥𝑖) ← {𝑋1
𝑖 , 𝑌

1
𝑖 }, 𝑓𝑙𝑎𝑔 = 0.

7: if 𝑐𝑟1 > 𝜀1 ∪ 𝑐𝑟2 > 𝜀1 ∪ 𝑐𝑟3 > 𝜀1 then
8: while 𝑓𝑙𝑎𝑔 ! = 1 do
9: Determine the optimal interval of the 𝑖𝑡ℎ cut line 𝑖𝑣𝑓𝑖 by Eq.

(12).
10: Sample a new point 𝑥𝑤𝑖 according to Eq. (13).
11: Calculate 𝛥𝑥 by Eq. (14).
12: if 𝛥𝑥 < 0.1 then
13: Determine the optimal interval of the 𝑖𝑡ℎ cut line 𝑖𝑣𝑝𝑖 by

Eq.(15).
14: Sample a new point 𝑥𝑠𝑖 by Eq. (16).
15: if 𝑖𝑣𝑓𝑖! = 𝑖𝑣𝑝𝑖 then
16: Add (𝑥𝑠𝑖 , 𝑓𝑖(𝑥

𝑠
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 }. Reconstruct 𝑓𝑖(𝑥𝑖) ←

{𝑋1
𝑖 , 𝑌

1
𝑖 }.

7: Calculate 𝑐𝑟4 of 𝑥𝑠𝑖 by Eq. (17).
8: if 𝑐𝑟4 ≤ 𝜀1 then
9: 𝑓𝑙𝑎𝑔 = 1.
0: end if
1: else
2: 𝑓𝑙𝑎𝑔 = 1.
3: end if
4: else
5: Calculate 𝑐𝑟4 of 𝑥𝑤𝑖 by Eq. (17).
6: if 𝑐𝑟4 ≤ 𝜀1 then
7: Determine the optimal interval of the 𝑖𝑡ℎ cut line 𝑖𝑣𝑝𝑖 by

Eq. (15).
8: Sample a new point 𝑥𝑞𝑖 according to Eq. (16).
9: if 𝑖𝑣𝑓𝑖 == 𝑖𝑣𝑝𝑖 then
0: 𝑓𝑙𝑎𝑔 = 1.
1: else
2: Calculate 𝑐𝑟4 of 𝑥𝑞𝑖 by Eq. (17).
3: if 𝑐𝑟4 ≤ 𝜀1 then
4: 𝑓𝑙𝑎𝑔 = 1.
5: end if
6: Add (𝑥𝑞𝑖 , 𝑓𝑖(𝑥

𝑞
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 }.

7: end if
8: end if
9: Add (𝑥𝑤𝑖 , 𝑓𝑖(𝑥

𝑤
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 }. 𝑓𝑖(𝑥𝑖) ← {𝑋1

𝑖 , 𝑌
1
𝑖 }.

0: end if
1: end while
2: end if
3: end for

utput: First-order RBF-HDMR 𝑓 1(𝑥) = 𝑓0+
𝐷
∑

𝑖=1
𝑓𝑖(𝑥𝑖), Training data set

1 𝐷𝑆1.

and the RBF model is constructed. Then the DIRECT algorithm is used
to evaluate the response of the sample points generated based on the
maximum response difference or the maximum interval difference in
the potential rectangle. Take more samples around highly non-linear
regions by setting the underlying rectangle of DIRECT at the current
5

sample with the largest prediction difference. The pseudo-code of the c
first-order RBF-HDMR modeling is shown in Algorithm 2. The modeling
process consists of the following steps:

Step1. Initialize the first-order RBF model. At first, choose the center
of the input space as the cut point x𝑐 , and calculate the response 𝑓0.
ample two points along the 𝑖th cut line (i.e., 𝑖th dimension of the cut
oint) at the lower and upper bounds of the cut point (𝑥−𝑖 , x

𝑖
𝑐 ), (𝑥

+
𝑖 , x

𝑖
𝑐 ),

espectively. Evaluate their first-order fitness values, 𝑓𝑖(𝑥−𝑖 ), 𝑓𝑖(𝑥
+
𝑖 ) and

onstruct the 𝑖th first-order RBF model. Randomly generate a sample
oint (𝑥𝑟𝑖 , x

𝑖
𝑐 ) along 𝑖th cut line and evaluate the first-order fitness

alue 𝑓𝑖(𝑥𝑟𝑖 ). Calculate the three convergence metrics 𝑐𝑟1, 𝑐𝑟2, 𝑐𝑟3 using
qs. (9)–(11). Add (𝑥𝑐𝑖 , 𝑓𝑖(𝑥

𝑐
𝑖 )) to the 𝑖th first-order training set {𝑋1

𝑖 , 𝑌
1
𝑖 },

onstruct 𝑓𝑖(𝑥𝑖) using {𝑋1
𝑖 , 𝑌

1
𝑖 }.

𝑟1 =
|

|

|

|

|

𝑓𝑖(𝑥𝑟𝑖 ) − 𝑓𝑖(𝑥𝑟𝑖 )
𝑓𝑖(𝑥𝑟𝑖 )

|

|

|

|

|

(9)

𝑐𝑟2 =
|

|

|

|

|

𝑓𝑖(𝑥𝑐𝑖 )
𝑓0

|

|

|

|

|

(10)

𝑐𝑟3 =
|

|

|

|

|

𝑓𝑖(𝑥+𝑖 ) − 𝑓𝑖(𝑥𝑐𝑖 )
𝑥+𝑖 − 𝑥𝑐𝑖

−
𝑓𝑖(𝑥𝑐𝑖 ) − 𝑓𝑖(𝑥−𝑖 )

𝑥𝑐𝑖 − 𝑥−𝑖

|

|

|

|

|

(11)

Step2. Check the linearity of the first-order RBF model. If all con-
vergence metrics satisfy the demand for precision, the first-order RBF
model is considered linear. Finish the 𝑖th first-order RBF-HDMR mod-
eling.

Otherwise, when the cyclic condition is satisfied, determine the
optimal interval of the 𝑖th cut line 𝑖𝑣𝑓𝑖 by the following equation.

𝑖𝑣𝑓𝑖 = max(||
|

𝑓𝑖(𝑥𝑒+𝑖 ) − 𝑓𝑖(𝑥𝑒−𝑖 )||
|

) (12)

Where 𝑥𝑒+𝑖 and 𝑥𝑒−𝑖 represent the positions of the upper and lower
endpoints of each interval on the 𝑖th cut line, respectively. Then, sample
a new point according to the following equation:

𝑥𝑤𝑖 =
𝑥𝑓<𝑖 + (1 + 𝛽)𝑥𝑓>𝑖

2 + 𝛽
(13)

Where 𝑥𝑓<𝑖 represents the endpoint with a smaller response value in the
optimal interval based on the maximum response difference and 𝑥𝑓>𝑖 is
he endpoint with a larger response value in the optimal interval. 𝛽
ndicates the sampling factor. Calculate the boundary metric using the
ollowing equation:

𝑥 = ‖

‖

‖

𝑥𝑓>𝑖 − 𝑥𝑓<𝑖
‖

‖

‖2
(14)

Step3. First-order RBF-HDMR modeling when the optimal inter-
al length based on the maximum response difference satisfies the
onvergence criteria.

If 𝛥𝑥 satisfies the convergence criteria, determine the optimal inter-
al of the 𝑖th cut line 𝑖𝑣𝑝𝑖 based on the maximum length difference by
he following equation:

𝑣𝑝𝑖 = max(||
|

𝑥𝑒+𝑖 − 𝑥𝑒−𝑖
|

|

|

) (15)

Sample a new point according to the following equation:

𝑠
𝑖 =

𝑥𝑝<𝑖 + (1 + 𝛽)𝑥𝑝>𝑖
2 + 𝛽

(16)

Where 𝑥𝑝<𝑖 represents the endpoint with a smaller response value in
the optimal interval based on the maximum length difference and 𝑥𝑝>𝑖
is the endpoint with a larger response value in the optimal interval. If
𝑖𝑣𝑓𝑖 = 𝑖𝑣𝑝𝑖, set the cycling condition to false. Otherwise, add (𝑥𝑠𝑖 , 𝑓𝑖(𝑥

𝑠
𝑖 ))

o {𝑋1
𝑖 , 𝑌

1
𝑖 }. Reconstruct 𝑓𝑖(𝑥𝑖) using {𝑋1

𝑖 , 𝑌
1
𝑖 }. Calculate convergence

riteria 𝑐𝑟4 of 𝑥𝑠𝑖 by Eq. (17). If 𝑐𝑟4 meets the convergence criteria, set
he cycling condition to false.

𝑟4 =
|

|

|

|

|

𝑓𝑖(𝑥𝑛𝑒𝑤𝑖 ) − 𝑓𝑖(𝑥𝑛𝑒𝑤𝑖 )
𝑓𝑖(𝑥𝑛𝑒𝑤𝑖 )

|

|

|

|

|

(17)

Step4. First-order RBF-HDMR modeling when the optimal interval
ength based on the maximum response difference does not satisfy the

onvergence criteria.
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If 𝛥𝑥 does not meet the criteria, calculate convergence criteria 𝑐𝑟4
f 𝑥𝑤𝑖 by Eq. (17). When 𝑐𝑟4 meets the convergence criteria, determine
he optimal interval of the 𝑖th cut line 𝑖𝑣𝑝𝑖 by Eq. (15). Sample a new

point 𝑥𝑞𝑖 according to Eq. (16). If 𝑖𝑣𝑓𝑖 = 𝑖𝑣𝑝𝑖, set the cycling condition
o false. Otherwise, calculate convergence criteria 𝑐𝑟4 of 𝑥𝑞𝑖 by Eq. (17).
f 𝑐𝑟4 of 𝑥𝑞𝑖 meets the convergence criteria, set the cycling condition to
alse. Add (𝑥𝑞𝑖 , 𝑓𝑖(𝑥

𝑞
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 }, set the cycling condition to false.

Add (𝑥𝑤𝑖 , 𝑓𝑖(𝑥
𝑤
𝑖 )) to {𝑋1

𝑖 , 𝑌
1
𝑖 }. 𝑓𝑖(𝑥𝑖) using {𝑋1

𝑖 , 𝑌
1
𝑖 }. Repeat steps 1 to

until all first-order component functions are constructed. So far, the
onstruction of the first-order RBF-HDMR model is completed.

.3. Hierarchical surrogate technique

The hierarchical surrogate technique shown in algorithm 3 consists
f three steps. Firstly, the fitness and error value-based RBF models are
onstructed using the training data subset 1. Secondly, the composite
urrogate model 𝐶𝑆 is built by combining the first-order RBF-HDMR
odel and the error value-based RBF model. Then the comparison of
𝑆 and the fitness value-based RBF model are conducted through the
ontrastive analysis, in which the RMSE values of these two surro-
ates on the training data subset 2 are calculated, the surrogate with
he smaller RMSE value is selected as the HSM. Finally, the chosen
urrogate is constructed on the database.

Algorithm 3 Hierarchical surrogate modeling.

Input: 𝑁𝑠2, 𝐷𝑆1, 𝐷𝑆2, 𝜂, 𝑓 1(𝑥), 𝑋𝑈 , 𝑋𝐿, 𝐷
1: Construct the fitness value-based RBF surrogate model 𝐹𝑆 𝑓𝑅(𝑥) ←

𝐷𝑆1.
2: Construct the error value-based RBF surrogate model 𝑓 𝜀(𝑥) using

{

(𝑥, 𝑓 (𝑥) − 𝑓 1(𝑥))|𝑥 ∈ 𝐷𝑆1
}

.
3: Build the composite surrogate model 𝐶𝑆 𝑓𝐶 (𝑥) = 𝑓 1(𝑥) + 𝑓 𝜀(𝑥).
4: Calculate RMSE values of 𝑓𝐶 (𝑥) and 𝑓𝑅(𝑥) on 𝐷𝑆2.
5: if 𝑅𝑀𝑆𝐸𝐶𝑆 ≤ 𝑅𝑀𝑆𝐸𝐹𝑆 then
6: 𝑓𝐶 (𝑥) ← 𝐷𝑆1 ∪𝐷𝑆2.
7: 𝑓 (𝑥) = 𝑓𝐶 (𝑥).
8: else
9: 𝑓𝑅(𝑥) ← 𝐷𝑆1 ∪𝐷𝑆2.

10: 𝑓 (𝑥) = 𝑓𝑅(𝑥).
11: end if
Output: Final HSM 𝑓 (𝑥).

3.4. Adaptive infill strategy

The pseudo-code of the adaptive infill strategy (AIS) is shown in
Algorithm 4. At first, when the individual with the best-predicted
fitness value is determined, the real fitness value of the individual is
evaluated by the real fitness function (Also known as the performance-
based criteria). Compare the obtained real fitness value to the minimum
fitness value in the database, the individual with the smaller real fitness
value is set to the current best solution 𝑥𝑏, update the database with
the best individual in the population. Then the second infill strategy
is based on 𝑥𝑏, choose one dimension 𝑘 randomly in the design space.
In the chosen 𝑘th dimension, we create the upper and lower boundary
around 𝑥𝑏 using the following equations:

𝑟2 = (1 − 𝑐𝐹𝐸𝑠 − 1
𝑁𝑚𝑓 − 1

)

1
(1−𝑒−𝑝 )(1− 𝑐𝐹𝐸𝑠−1

𝑁𝑚𝑓
)

(18)

=
|

|

|

|

𝑓max − 𝑓min
𝑓min

|

|

|

|

(19)

̃ 𝑘
𝑈 = 𝑥𝑘𝑏 + 𝑟2(𝑋𝑘

𝑈 −𝑋𝑘
𝐿) (20)

𝑋̃𝑘
𝐿 = 𝑥𝑘𝑏 − 𝑟2(𝑋𝑘

𝑈 −𝑋𝑘
𝐿) (21)

Where 𝑐𝐹𝐸𝑠 and 𝑁𝑚𝑓 denote the current number of FEs and the
maximum number of extra FEs, respectively. 𝑝 is the pressure factor
6

Algorithm 4 Adaptive infill strategy.
Input: 𝑃𝑜𝑝(1), 𝐷𝐵, 𝐷, 𝑐𝐹𝐸𝑠, 𝑁𝑚𝑓
1: Select the individual 𝑃𝑜𝑝(1) as the first infill point and evaluate the

real fitness value 𝑓1.
2: if 𝑓1 < 𝑚𝑖𝑛(𝐷𝐵) then
3: 𝑥𝑏 = 𝑃𝑜𝑝 (1).
4: else
5: 𝑥𝑏 = 𝑥𝑚𝑖𝑛(𝐷𝐵).
6: end if
7: 𝐷𝐵 = [𝐷𝐵; (𝑃𝑜𝑝(1),𝑓1)].
8: 𝑐𝐹𝐸𝑠 = 𝑐𝐹𝐸𝑠 + 1.
9: if 𝑐𝐹𝐸𝑠 == 𝑁𝑚𝑓 then
0: Break.
1: end if
2: Randomly select a dimension 𝑘 = 𝑟𝑎𝑛𝑑𝑖(1, 𝐷).
3: Mutate the 𝑥𝑏 in the 𝑘𝑡ℎ dimension by Eqs. (18-21).
4: Obtain 𝑃𝑜𝑝(1)𝑚.
5: Evaluate the real fitness value 𝑓2 of 𝑃𝑜𝑝(1)𝑚.
6: if 𝑓2 < 𝑚𝑖𝑛(𝐷𝐵) then
7: 𝑥𝑏 = 𝑃𝑜𝑝(1)𝑚.
8: else
9: 𝑥𝑏 = 𝑥𝑚𝑖𝑛(𝐷𝐵).
0: end if
1: 𝐷𝐵 = [𝐷𝐵; (𝑃𝑜𝑝(1)𝑚,𝑓2)].
2: 𝑐𝐹𝐸𝑠 = 𝑐𝐹𝐸𝑠 + 1.
3: if 𝑐𝐹𝐸𝑠 == 𝑁𝑚𝑓 then
4: Break.
5: end if
utput: Infill points, 𝐷𝐵, 𝑐𝐹𝐸𝑠

of the mutation range. Then mutate 𝑥𝑏 along the 𝑘th dimension with
the uniform sampling in the interval [𝑋̃𝑘

𝐿, 𝑋̃
𝑘
𝑈 ]. When the positions of

the 𝑋̃𝑘
𝐿 and 𝑋̃𝑘

𝑈 exceed the boundary, set their values as the boundary
values. In the early stage of the adaptive infill strategy, the value
of 𝑟2 is large, so that the mutation range around 𝑥𝑏 is at a large
level, so the new solution obtained by mutating 𝑥𝑏 is far away from
𝑥𝑏 on the 𝑘th dimension, thereby increasing the exploration ability
of the entire search process. As the number of iterations increases,
the value of 𝑟2 gradually decreases, so the new solution obtained by
mutating 𝑥𝑏 is as close as possible to 𝑥𝑏 on the 𝑘th dimension, thereby
enhancing exploitation ability of the evolutionary search. Therefore,
through the second infill criteria, the proposed adaptive infill strategy
can achieve a good balance between exploration and exploitation in the
evolutionary search process. In addition, the larger the pressure factor,
the more significant the difference between the database’s maximum
and minimum function values (𝑓max, 𝑓min). When the pressure factor
increases, the adaptive infill strategy will improve the mutation range,
thereby adaptively improving the exploration ability of SAEA-HAS.
After the mutated solution is obtained, the real fitness value of the
mutated individual is evaluated. Then compare the obtained real fitness
value to the minimum fitness value in the database, and the individual
with the smaller real fitness value is set to the current best solution 𝑥𝑏.
The database is updated with the mutated individual in the population.
Finally, output the infill points, the current number of real fitness
evaluations and the updated database.

3.5. Complexity analysis

The computational complexity of an algorithm indicates the number
of resources required to run it. The computational complexity of the
main steps in SAEA-HAS is shown in Table 1, in which 𝑁 refers to
𝐷



Expert Systems With Applications 232 (2023) 120826H. Chen et al.
Fig. 2. The average root mean square errors of the three surrogate models on the nine test functions.
Table 1
Computational complexity of SAEA-HAS.

HDMR HSM Evaluation Infill Strategy

𝑂(𝐷𝑁𝐷) 𝑂(𝑀𝑁𝑠2) 𝑂( 𝑁𝑃𝑜𝑝𝑁𝑚𝑓

2
) 𝑂(𝑁𝑚𝑓 )

the number of training samples evaluated by real fitness function in
the 𝐷th component of the HDMR model. 𝑀 indicates the number of
surrogate models employed in HSM, its value is 2 (the fitness value-
based surrogate and the composite surrogate). 𝑁𝑠2 is the size of training
subset 2. The notation 𝑁𝑃𝑜𝑝 represents the number of parent population
and offspring evaluated by HSM in each iteration. It is worth noting that
for expensive black-box optimization problems, the computational costs
of the real fitness evaluation are much larger than that of the surrogate
modeling, fitness prediction and optimization iteration in the SAEA
algorithm. Therefore, compared to the other three parts in Table 1, the
computational cost of evaluation is relatively small in solving expensive
7

optimization problems.
Table 2
Average RMSE and average number of training samples (in brackets) for HSM𝑐 and
second-order HDMR model on the Ackley function.

Function 𝐷 HSM𝑐 Second order HDMR

Ackley

10 1.52E+00(1.21E+02) 2.40E+00(3.82E+02)
30 1.63E+00(3.31E+02) 7.02E+00(2.49E+03)
50 1.43E+00(4.51E+02) 9.35E+00(6.54E+03)
100 1.50E+00(9.01E+02) 1.24E+01(2.52E+04)

4. Experimental studies

4.1. Experimental setup

To test the performance of SAEA-HAS, twelve benchmark functions
widely used in evolutionary optimization (Liu, Liu, & Tan, 2023; Sugan-
than et al., 2005; Surjanovic & Bingham, 2013) are employed to com-
pare SAEA-HAS with other well-known SAEAs. The twelve benchmark
test problems have different characteristics, including multi-modal,
bowl-shaped uni-modal, valley-shaped uni-modal and shifted global

optimum. The details of those functions can be found in the Appendix
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Fig. 3. Convergence curves of the two SAEAs on the two test functions under different dimensions.
Fig. 4. The exploration and exploitation transformation of the AIS on the two test functions under different dimensions.
Table 3
The average optimal fitness values of the two SAEAs on two test functions under
different dimensions.

Function 𝐷 SAEA-HAS SAEA-HASw

Ellipsoid

10 1.69E−01 ± 2.45E−01 6.57E+00 ± 1.09E+01(+)
30 2.02E+02 ± 1.74E+02 4.03E+02 ± 2.99E+02(+)
50 3.64E+02 ± 3.18E+02 1.84E+03 ± 3.83E+02(+)
100 4.04E+03 ± 9.08E+02 6.34E+03 ± 2.57E+03(+)

Rastrigin

10 5.84E+01 ± 1.44E+01 8.94E+01 ± 1.37E+01(+)
30 1.84E+02 ± 2.62E+01 2.74E+02 ± 2.23E+01(+)
50 3.23E+02 ± 2.74E+01 4.29E+02 ± 4.29E+01(+)
100 6.66E+02 ± 1.09E+02 9.44E+02 ± 9.52E+01(+)

𝑤∕𝑡∕𝑙 NA 8∖0∖0

( Table A.1). Five existing well-known algorithms, including SAEA-
RFS (Fu et al., 2020), SAEA-UGC (Liu et al., 2021), HESNFO (Yu,
Liang, Wu et al., 2022), LSADE (Kudela & Matousek, 2023) and aRBF-
NFO (Yu, Liang, Zhao et al., 2022) are employed to compare with the
proposed SAEA-HAS. For a fair experimental analysis, the following
experimental settings are given.
8

• For the evolutionary optimization algorithm, a generic GA (Mir-
jalili, 2019) using the simulated binary crossover (SBX), polyno-
mial mutation, and tournament selection is used in SAEA-HAS,
HESNFO, SAEA-UGC and aRBF-NFO, the population size is set
to 100. The crossover and mutation probabilities are set to 1
and 1∕𝐷, respectively. The number of folds for HESNFO and
SAEA-UGC algorithms is set to the minimum of all fold numbers
(𝐷 = 30, 50, 100). 𝐷 refers to the dimension of the fitness function.
Differential algorithm (DE) (Qin, Huang, & Suganthan, 2009) is
used in SAEA-RFS and LSADE (Static rule); the training sample
set is used to initialize the population in LSADE, the settings of
algorithm parameters of the two SAEAs are consistent with the
original paper.

• The training samples of SAEA-HAS consists of two parts. The first
training set was for building the first-order RBF-HDMR and the
second training set was for the contrastive analysis. The values of
convergence criteria 𝜀1 and the sampling factor 𝛽 are set to 0.01
and 0.5, respectively. The RBF-HMDR model-building process
determines the number of sample points in the first training set.
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Fig. 5. Convergence curves of different SAEAs for test problems with 10 dimensions.
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Table 4
Comparisons between the proposed algorithm and other SAEAs on test problems with 10 dimensions.

Function ID Metric SAEA-HAS HESNFO SAEA-UGC LSADE SAEA-RFS aRBF-NFO

Ellipsoid F1
Mean 1.767E−01 3.975E+01 4.097E+01 2.516E+01 3.336E+01 6.292E−01
Std. 1.852E−01 1.486E+01 1.219E+01 1.311E+01 6.670E+00 3.633E−01

+ + + + +

Rosenbrock F2
Mean 4.629E+03 3.778E+03 1.116E+04 6.559E+03 4.671E+03 4.543E+02
Std. 2.802E+03 1.891E+03 6.931E+02 2.135E+03 1.413E+03 2.592E+02

≈ + + ≈ –

Rotated Hyper-Ellipsoid F3
Mean 4.116E+03 1.039E+04 7.486E+03 4.588E+03 8.734E+03 6.434E+03
Std. 3.330E+03 2.254E+03 1.942E+03 1.782E+03 2.726E+03 2.225E+03

+ + ≈ + +

Trid F4
Mean −1.054E+02 −1.017E+02 −9.209E+01 −1.004E+02 −1.020E+02 −9.933E+01
Std. 1.176E+01 8.945E+00 4.714E+00 7.314E+00 4.037E+00 6.092E+00

≈ + ≈ ≈ ≈

Dixon-Price F5
Mean 7.244E+02 8.958E+02 3.900E+03 1.814E+03 2.067E+03 1.131E+02
Std. 7.379E+02 6.297E+02 1.142E+03 7.222E+02 5.698E+02 8.215E+01

≈ + + + –

Ackley F6
Mean 1.542E+01 1.674E+01 1.595E+01 1.299E+01 1.612E+01 1.635E+01
Std. 1.118E+00 4.394E−01 4.600E−01 2.069E+00 4.257E−01 4.019E−01

+ ≈ – + +

Griewank F7
Mean 1.038E+01 5.074E+01 3.243E+01 1.448E+01 2.679E+01 1.722E+01
Std. 9.289E+00 3.010E+00 8.603E+00 4.781E+00 9.712E+00 5.461E+00

+ + + + +

Rastrigin F8
Mean 6.100E+01 8.543E+01 8.874E+01 4.772E+01 4.701E+01 7.497E+01
Std. 1.075E+01 1.402E+01 1.511E+01 1.293E+01 1.088E+01 1.092E+01

+ + – – +

Styblinski-Tang F9
Mean −3.576E+02 −2.058E+02 −2.231E+02 −2.811E+02 −2.509E+02 −2.612E+02
Std. 2.754E+01 1.269E+01 2.204E+01 2.279E+01 2.578E+01 2.783E+01

+ + + + +

Shifted Rosenbrock F10
Mean 2.243E+08 6.161E+09 1.133E+09 2.425E+08 5.298E+09 6.786E+08
Std. 4.554E+08 2.653E+09 7.140E+08 1.856E+08 2.253E+09 3.439E+08

+ + + + +

Shifted Rotated Griewank F11
Mean 1.340E+03 3.329E+03 2.266E+03 1.645E+03 1.884E+03 1.623E+03
Std. 5.365E+02 2.068E+02 1.877E+02 3.573E+02 6.069E+02 3.932E+02

+ + + + +

Shifted Rastrigin F12
Mean −2.677E+02 −2.270E+02 −2.221E+02 −2.586E+02 −2.520E+02 −2.563E+02
Std. 2.175E+01 1.069E+01 1.044E+01 1.890E+01 1.415E+01 1.891E+01

+ + ≈ + +

𝑤∕𝑡∕𝑙 NA 9∖3∖0 11∖1∖0 7∖3∖2 9∖2∖1 9∖1∖2
Average Ranking 1.5 4.875 5.1667 2.6667 3.875 2.9167

Adjusted 𝑝− value NA 0.00001 0.000002 0.12663 0.001873 0.063617
The samples in the second training set are generated by the 𝐿𝐻𝑆
in the input domain. According to Wang et al. (2017), the amount
of data in the second training set is five times the dimension of the
fitness function, which is represented by 5𝐷. The training sample
set for the other five comparison algorithms is the same as that
of SAEA-HAS.

• The RBF model with Gaussian kernel function is adopted as the
base surrogate in this work. Because of the ensemble of surrogates
included in SAEA-UGC, the kernel functions of the other two RBF
models use Multi-quadric and Thin plate spline, respectively. The
kernel parameter of the RBF model in SAEA-HAS, SAEA-UGC,
SAEA-RFS, aRBF-NFO and LSADE is set to 1.

• To avoid randomness, the six SAEAs perform 20 times on each
benchmark test problem and the average optimization results
with standard deviation are obtained. Wilcoxon’s rank-sum test
(Significance level 𝛼 = 0.05) is used to compare SAEA-HAS and
other comparison algorithms. Moreover, the Friedman test with
the Bergmann-Hommel 𝑝𝑜𝑠𝑡 − ℎ𝑜𝑐 test (Significance level 𝛼 =
0.05) is further used to conduct multiple comparisons of different
SAEAs.

All numerical experiments were carried out on a computer with the
MD processor (16-Core, 2.40 GHz). The computer’s RAM is 1 TB.
10
4.2. Accuracy analysis of the hierarchical surrogate model

In this section, we employ nine commonly used test functions in
surrogate modeling, including Ellipsoid, Rosenbrock, Rotated Hyper-
Ellipsoid, Trid, Dixon Price, Ackley, Griewank, Rastrigin and Styblinski-
Tang, to compare the global prediction accuracy of the stand-alone RBF
surrogate and the HSM. Ellipsoid, Rosenbrock, Rotated Hyper-Ellipsoid,
Trid and Dixon Price are uni-modal functions while Ackley, Griewank,
Rastrigin and Styblinski-Tang are multi-modal test functions. In order
to verify the effectiveness of the contrastive analysis, the HSM model
with contrastive analysis HSM𝑐 and the HSM model without contrastive
analysis HSM𝑛𝑐 are both compared on these functions.

The training data generated by 𝐿𝐻𝑆 is employed to construct the
RBF model, and the number of training samples of these surrogates
is the same. To remove the effect of random sampling, 20 different
training sets are generated for comparison. Randomly sample 1000
prediction points to test the surrogate models constructed with the
training set. The global prediction accuracy of these surrogates is then
evaluated by computing the mean root mean square error (RMSE).

As shown in Fig. 2, compared to the stand-alone RBF model, the
average RMSE values of HSM on the nine test functions suggest that
HSM has superiority in global prediction accuracy. In most test prob-
lems (7 out of 9), the global prediction accuracy of HSM is much higher
than that of the stand-alone RBF model under different dimensions (10,
30, 50, 100), which suggests that the proposed HSM has good global



Expert Systems With Applications 232 (2023) 120826H. Chen et al.

a
f
c
S
t

Table 5
Comparisons between the proposed algorithm and other SAEAs on test problems with 30 dimensions.

Function ID Metric SAEA-HAS HESNFO SAEA-UGC LSADE SAEA-RFS aRBF-NFO

Ellipsoid F1
Mean 2.573E+02 2.525E+02 2.913E+02 4.837E+02 3.339E+02 1.72E+02
Std. 1.258E+02 6.092E+01 1.245E+02 8.471E+01 5.072E+01 8.23E+01

≈ ≈ + + –

Rosenbrock F2
Mean 1.677E+04 2.716E+04 2.002E+04 3.430E+04 1.888E+04 6.331E+04
Std. 6.816E+03 5.668E+03 5.665E+03 2.213E+03 2.285E+03 3.413E+04

+ ≈ + ≈ +

Rotated Hyper-Ellipsoid F3
Mean 7.439E+04 1.191E+05 8.110E+04 5.093E+04 1.051E+05 9.934E+04
Std. 9.563E+03 1.066E+03 8.108E+03 1.266E+04 7.337E+03 2.135E+04

+ + – + +

Trid F4
Mean −4.585E+02 −4.321E+02 −4.544E+02 −4.335E+02 −4.545E+02 −4.333E+02
Std. 1.974E+01 4.436E+00 1.686E+01 4.531E+00 4.365E+00 3.419E+00

+ ≈ + ≈ +

Dixon-Price F5
Mean 1.052E+04 2.088E+04 1.361E+04 3.121E+04 1.998E+04 4.718E+04
Std. 5.983E+03 4.213E+03 4.984E+03 6.570E+03 1.746E+03 2.067E+04

+ ≈ + + +

Ackley F6
Mean 1.642E+01 1.728E+01 1.665E+01 1.540E+01 1.637E+01 1.832E+01
Std. 1.460E−01 1.158E−02 1.073E−01 1.027E+00 9.889E−02 8.937E−01

+ + – ≈ +

Griewank F7
Mean 1.093E+02 1.642E+02 1.176E+02 8.779E+01 1.295E+02 1.532E+02
Std. 9.908E+00 1.341E−01 8.425E+00 1.730E+01 1.729E+01 5.181E+01

+ + – + +

Rastrigin F8
Mean 1.833E+02 3.313E+02 2.188E+02 2.090E+02 1.402E+02 2.302E+02
Std. 2.397E+01 2.520E+01 2.052E+01 2.495E+01 2.534E+01 2.875E+01

+ + + – +

Styblinski-Tang F9
Mean −8.842E+02 −4.713E+02 −7.851E+02 −7.263E+02 −6.529E+02 −7.808E+02
Std. 1.783E+02 3.639E+01 1.343E+02 5.066E+01 4.676E+01 6.892E+01

+ ≈ + + ≈

Shifted Rosenbrock F10
Mean 2.029E+10 3.811E+10 2.457E+10 5.514E+09 3.082E+10 6.643E+09
Std. 4.772E+09 2.124E+06 3.328E+09 3.005E+09 4.256E+09 3.338E+09

+ + – + –

Shifted Rotated Griewank F11
Mean 5.817E+03 1.136E+04 7.478E+03 6.454E+03 7.088E+03 8.207E+03
Std. 2.727E+03 7.097E+02 1.755E+03 3.146E+02 7.134E+02 7.632E+02

+ + + + +

Shifted Rastrigin F12
Mean −1.441E+01 1.406E+02 2.279E+01 4.807E+01 4.404E+01 6.749E+00
Std. 2.904E+01 3.406E+01 2.036E+01 2.252E+01 3.076E+01 4.243E+01

+ + + + ≈

𝑤∕𝑡∕𝑙 NA 11∖1∖0 7∖5∖0 8∖0∖4 8∖3∖1 8∖2∖2
Average Ranking 1.7083 5.25 3.25 3.1667 3.4583 4.1667

Adjusted 𝑝− value NA 0.000004 0.043538 0.05621 0.021947 0.001288
prediction accuracy on both uni-modal and multi-modal problems.
Since there are high-order interactions between design variables in the
Rastrigin and Ackley functions, the stand-alone RBF model provides
better prediction results than HSM on the two functions. From the
average RMSE results on the Rastrigin and Ackley functions, we can
observe that the global prediction accuracy of HSM𝑐 is higher than that
of HSM𝑛𝑐 . It means that the contrastive analysis can effectively identify
the test problem with high-order interactions between input variables,
thereby improving the robustness of HSM.

4.3. Order selection of HDMR model

In general, the expansion of HDMR to the second order is considered
sufficient to represent the output. However, when the fitness function
is highly nonlinear, the number of sample points required to train the
second-order HDMR model increases sharply with the increase of the
model order.

Take the Ackley function (highly nonlinear) as an example, we cal-
culate the average RMSE and the average number of training samples
for HSM𝑐 and second-order HDMR model on the Ackley function (based
on 20 independent runs). As listed in Table 2, the second-order HDMR
model requires far more sample points than HSM𝑐 , and its prediction
ccuracy is also lower than that of HSM𝑐 . This gap expands as the
unction dimension increases. For expensive optimization problems, the
alculation cost of the fitness value is high. Therefore, in the proposed
AEA-HAS, we choose to use the first-order HDMR model to maintain
he computational efficiency of HSM .
11

𝑐

4.4. Analysis of the adaptive infill strategy

In this work, the adaptive infill strategy (AIS) is integrated into
SAEA-HAS with the aim of enhancing its exploration and exploitation
abilities. It is necessary to investigate the influence of the AIS on SAEA-
HAS. This section employs the uni-modal test problem Ellipsoid and
the multi-modal test problem Rastrigin as test examples. To analyze
the performance of the proposed AIS, we compare the performance
of SAEA-HAS with AIS and SAEA-HAS with only the performance-
based criteria on the test examples under different dimensions (10, 30,
50, 100). Each algorithm performs 20 times independently to avoid
randomness. The number of extra FEs is five times the dimension of
the fitness function. Other parameters of the SAEA-HAS algorithm are
the same as in Section 4.1. Convergence curves of the average fitness
values of the two algorithms on different test problems are obtained
to see the impact of AIS on the convergence performance. In addition,
to observe the shift in exploration and exploitation of the AIS strategy
as the number of FEs increases, we also record average changes in the
distance between the current best solution and the mutated solution.
The test results are shown in Figs. 3, 4 and Table 3.

As shown in Fig. 3, compared with SAEA-HAS without AIS, SAEA-
HAS with AIS shows better performance in terms of convergence on
Ellipsoid and Rastrigin functions with different dimensions (10, 30,
50, 100). SAEA-HAS with only performance-based infill criteria suffers
from premature convergence of optimization results. The Wilcoxon
rank sum test results listed in Table 3 indicate that AIS can enhance
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Table 6
Comparisons between the proposed algorithm and other SAEAs on test problems with 50 dimensions.

Function ID Metric SAEA-HAS HESNFO SAEA-UGC LSADE SAEA-RFS aRBF-NFO

Ellipsoid F1
Mean 4.239E+02 8.045E+02 5.476E+02 1.740E+03 9.658E+02 9.144E+02
Std. 4.509E+02 8.673E+01 3.980E+02 1.144E+02 7.174E+01 2.188E+02

+ ≈ + + +

Rosenbrock F2
Mean 3.569E+04 5.317E+04 4.078E+04 6.283E+04 3.302E+04 3.786E+05
Std. 1.082E+04 7.375E+03 8.283E+03 1.200E+03 2.478E+03 2.432E+05

+ ≈ + ≈ +

Rotated Hyper-Ellipsoid F3
Mean 2.077E+05 3.306E+05 2.335E+05 2.185E+05 2.985E+05 3.945E+05
Std. 2.108E+04 1.332E+03 1.675E+04 3.935E+04 1.635E+04 7.088E+04

+ + ≈ + +

Trid F4
Mean −8.126E+02 −7.712E+02 −8.039E+02 −7.777E+02 −8.086E+02 −7.756E+02
Std. 1.784E+01 3.081E+00 1.429E+01 5.997E+00 5.498E+00 3.922E+00

+ ≈ + ≈ +

Dixon-Price F5
Mean 4.405E+04 7.546E+04 4.877E+04 1.105E+05 5.660E+04 3.394E+05
Std. 2.043E+04 1.093E+04 1.772E+04 7.189E+03 4.497E+03 1.509E+05

+ ≈ + + +

Ackley F6
Mean 1.651E+01 1.733E+01 1.668E+01 1.600E+01 1.635E+01 1.927E+01
Std. 2.140E−01 5.540E−03 1.690E−01 4.040E−01 1.078E−01 3.433E−01

+ + – – +

Griewank F7
Mean 1.810E+02 2.767E+02 2.040E+02 1.699E+02 2.171E+02 4.491E+02
Std. 1.473E+01 7.276E−02 1.120E+01 1.607E+01 1.989E+01 5.543E+01

+ + – + +

Rastrigin F8
Mean 3.298E+02 4.082E+02 3.511E+02 4.277E+02 2.524E+02 4.325E+02
Std. 3.318E+01 3.652E+01 2.998E+01 6.345E+01 5.348E+01 3.373E+01

+ ≈ + – +

Styblinski-Tang F9
Mean −1.281E+03 −7.056E+02 −1.195E+03 −1.013E+03 −1.062E+03 −1.241E+03
Std. 2.374E+02 2.348E+01 2.009E+02 9.559E+01 9.675E+01 6.493E+01

+ ≈ + + ≈

Shifted Rosenbrock F10
Mean 3.285E+10 6.013E+10 4.103E+10 2.482E+10 5.265E+10 6.028E+10
Std. 1.022E+10 4.765E+06 6.562E+09 1.555E+10 2.479E+09 3.165E+09

+ + – + +

Shifted Rotated Griewank F11
Mean 8.670E+03 1.610E+04 9.785E+03 8.691E+03 1.066E+04 1.186E+04
Std. 2.714E+03 3.846E+02 2.117E+03 7.191E+02 9.815E+02 5.939E+02

+ + ≈ + +

Shifted Rastrigin F12
Mean 1.776E+02 4.365E+02 2.164E+02 3.685E+02 3.299E+02 2.964E+02
Std. 4.692E+01 3.384E+01 3.841E+01 3.384E+01 1.725E+01 7.014E+01

+ + + + +

𝑤∕𝑡∕𝑙 NA 12∖0∖0 6∖6∖0 7∖2∖3 8∖2∖2 11∖1∖0
Average Ranking 1.5 4.9167 2.8333 3.5 3.1667 5.0833

Adjusted 𝑝− value NA 0.000008 0.080856 0.008829 0.029096 0.000003
the convergence performance of the proposed SAEA-HAS. As shown
in Fig. 4, we record average changes in the distance (in the mutation
dimension) between the current best solution and the mutated solution
on Ellipsoid and Rastrigin functions. From Fig. 4, we can observe that
in the early stage of the adaptive infill strategy, the mutation distance is
at a large level, which is beneficial for the exploration of the surrogate-
assisted evolutionary search. With the number of FEs increases, the
distance between the current best solution and the mutated solution
gradually decreases, indicating that AIS can effectively achieve the
balance between exploration and exploitation of the surrogate-assisted
evolutionary search. In addition, the distance change of the Ellipsoid
function is greater than that of the Rastrigin function because the
pressure factor of the Ellipsoid function is larger. In this case, the AIS
strategy will increase the mutation range, thereby adaptively improving
the exploration ability of SAEA-HAS on the test function.

4.5. Comparison on low dimensional problems

To investigate the optimization performance of SAEA-HAS on low-
dimensional problems (𝐷 = 10), we compare the proposed SAEA-HAS
with HESNFO, SAEA-UGC, LSADE, SAEA-RFS and aRBF-NFO. The num-
ber of extra FEs is five times the dimension of the fitness function. All
the experimental settings are introduced in Section 4.1. The statistical
results are shown in Table 4, Fig. 5. The symbols ‘‘+, ≈, -’’ in Table 4
suggest that from the result of the Wilcoxon rank-sum test of the
test problems, SAEA-HAS is better than, close to, or worse than the
12
compared algorithm, respectively. The twelve test problems’ Wilcoxon
rank-sum test results are presented by the symbols ‘‘𝑤, 𝑡, 𝑙’’. This indi-
cates that SAEA-HAS performs better on 𝑤 test problems, similar on
𝑡 test problems, and worse on 𝑙 test problems than its competitor. To
analyze the influence of the characteristics of different test problems
on the performance of the six SAEAs, the twelve benchmark test prob-
lems are divided into three categories, uni-modal (F1-F5), multi-modal
(F6-F9) and shifted global optimum (F10-F12).

As for the case with 10 dimension test problems, the test results
listed in Table 4 suggest that SAEA-HAS shows better overall perfor-
mance than the other five SAEAs on low-dimensional test problems.
According to the Friedman test results (SAEA-HAS is selected as the
control method), SAEA-HAS has the minimum average ranking value
(1.5). Moreover, SAEA-HAS produces the best average optimization
results (Shown in bold) on 8 of the 12 test problems.

Compared to SAEA-UGC and SAEA-RFS, SAEA-HAS and aRBF-NFO
have superiority in obtaining better optimal solutions on uni-modal test
functions with 10 dimensions (F1-F5) based on Wilcoxon’s rank-sum
test results. The convergence curves of all the algorithms on all the test
problems with 10 dimensions are plotted in Fig. 5. The convergence
performance of SAEA-HAS and aRBF-NFO is better than other com-
parison algorithms in uni-modal test functions. SAEA-HAS and LSADE
show better performance than HESNFO, SAEA-UGC and aRBF-NFO
on multi-modal test functions (F6-F9) (See Table 4). SAEA-HAS and
LSADE have similar performance on the multi-modal functions with
low dimensions. The convergence performance of SAEA-HAS is better
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Table 7
Comparisons between the proposed algorithm and other SAEAs on test problems with 100 dimensions.

Function ID Metric SAEA-HAS HESNFO SAEA-UGC LSADE SAEA-RFS aRBF-NFO

Ellipsoid F1
Mean 3.377E+03 2.481E+03 4.021E+03 7.573E+03 4.244E+03 5.192E+03
Std. 1.438E+03 6.420E+01 1.833E+03 2.286E+02 2.107E+02 1.066E+03

– ≈ + + +

Rosenbrock F2
Mean 7.422E+04 1.232E+05 1.257E+05 1.345E+05 6.926E+04 1.224E+06
Std. 1.676E+04 1.059E+04 1.141E+04 1.632E+03 5.526E+03 3.865E+05

+ + + ≈ +

Rotated Hyper-Ellipsoid F3
Mean 8.629E+05 1.326E+06 1.419E+06 1.109E+06 1.176E+06 2.058E+06
Std. 6.037E+04 5.225E+03 1.402E+04 1.491E+05 6.576E+04 2.592E+05

+ + + + +

Trid F4
Mean −1.712E+03 −1.622E+03 −1.577E+03 −1.626E+03 −1.690E+03 −1.615E+03
Std. 3.439E+01 4.178E+00 2.091E+01 4.552E+00 8.442E+00 5.549E+00

+ + + + +

Dixon-Price F5
Mean 2.775E+05 3.988E+05 4.595E+05 4.839E+05 2.354E+05 2.311E+06
Std. 5.556E+04 3.294E+04 6.522E+04 5.465E+03 1.533E+04 5.357E+05

+ + + – +

Ackley F6
Mean 1.640E+01 1.817E+01 1.800E+01 1.652E+01 1.700E+01 1.989E+01
Std. 6.619E−02 2.048E−01 1.871E−01 1.268E−01 1.848E−01 2.566E−01

+ + + + +

Griewank F7
Mean 3.660E+02 5.579E+02 6.539E+02 4.360E+02 4.360E+02 1.175E+03
Std. 2.436E+01 2.031E−02 1.217E+01 3.978E+01 3.010E+01 1.427E+02

+ + + + +

Rastrigin F8
Mean 6.568E+02 1.131E+03 1.368E+03 1.156E+03 4.650E+02 1.007E+03
Std. 1.041E+02 1.115E+02 1.641E+02 5.017E+01 8.800E+01 5.501E+01

+ + + – +

Styblinski-Tang F9
Mean −2.156E+03 −1.232E+03 −7.699E+02 −1.443E+03 −1.959E+03 −2.135E+03
Std. 3.527E+02 3.955E+01 1.741E+02 1.466E+02 1.083E+02 3.251E+02

+ + + + ≈

Shifted Rosenbrock F10
Mean 5.379E+10 1.063E+11 1.325E+11 8.788E+10 1.089E+11 1.075E+11
Std. 7.255E+09 1.446E+09 4.663E+09 5.352E+09 4.900E+09 5.637E+06

+ + + + +

Shifted Rotated Griewank F11
Mean 4.147E+04 4.216E+04 4.626E+04 4.694E+04 2.604E+04 4.386E+04
Std. 4.158E+03 4.601E+02 4.771E+03 4.046E+03 5.272E+02 3.794E+03

≈ + + – ≈

Shifted Rastrigin F12
Mean 7.495E+02 1.232E+03 1.474E+03 1.308E+03 1.112E+03 1.339E+03
Std. 6.172E+01 2.273E+01 5.680E+01 1.213E+02 8.570E+01 1.326E+02

+ + + + +

𝑤∕𝑡∕𝑙 NA 10∖1∖1 11∖1∖0 12∖0∖0 8∖1∖3 10∖2∖0
Average Ranking 1.4167 3.5417 5 3.875 2.375 4.7917

Adjusted 𝑝− value NA 0.005398 0.000003 0.001288 0.209568 0.00001
Table 8
Design variables of the Yagi-Uda antenna design problem.

Design variable Initial design Range

𝑥1 (m) 0.5𝜆 [0.4𝜆, 0.6𝜆]
𝑥2 (m) 0.495𝜆 [0.35𝜆, 0.495𝜆]
𝑥3 (m) 0.495𝜆 [0.35𝜆, 0.495𝜆]
𝑥4 (m) 0.495𝜆 [0.35𝜆, 0.495𝜆]
𝑥5 (m) 0.495𝜆 [0.35𝜆, 0.495𝜆]
𝑥6 (m) 0.3𝜆 [0.05𝜆, 0.3𝜆]
𝑥7 (m) 0.25𝜆 [0.05𝜆, 0.23𝜆]
𝑥8 (m) 0.25𝜆 [0.05𝜆, 0.23𝜆]
𝑥9 (m) 0.25𝜆 [0.05𝜆, 0.23𝜆]
𝑥10 (m) 0.25𝜆 [0.05𝜆, 0.23𝜆]

than that of the compared algorithms on Griewank and Styblinski-Tang
test functions. In addition, on these three test functions with shifted
global optimum (F10-F12), the optimization results obtained by SAEA-
HAS are better than the other five comparison algorithms. The test
results shown in Table 4 and Fig. 5 indicate that SAEA-HAS has better
robustness and convergence ability on low-dimensional test problems
than the compared algorithms.

4.6. Comparison on medium and high dimensional problems

To investigate the optimization performance of SAEA-HAS on
medium and high dimensional problems (𝐷 = 30, 50, 100), we employ
13
HESNFO, SAEA-UGC, LSADE, SAEA-RFS and aRBF-NFO to compare
with the proposed SAEA-HAS. The number of extra FEs is five times
the dimension of the fitness function. All the experimental settings are
introduced in Section 4.1.

As shown in Table 5, SAEA-HAS obtains the best average optimiza-
tion results on 3 out of the 5 uni-modal test problems with 30 di-
mensions (F1-F5). SAEA-HAS and SAEA-UGC have similar convergence
performance on the 5 uni-modal test functions. As for multi-modal
test problems (F6-F9) with 30 dimensions, Wilcoxon’s rank-sum test
results (See Table 5) suggest that SAEA-HAS is better than HESNFO,
SAEA-UGC, SAEA-RFS and aRBF-NFO in terms of the obtained aver-
age optimal results. SAEA-HAS and LSADE show similar performance
on multi-modal functions with 30 dimensions. SAEA-HAS and aRBF-
NFO have similar convergence performance on the test functions with
shifted global optimum (F10-F12). The Friedman test results listed in
Table 5 indicate that the overall performance of SAEA-HAS is better
than the other five algorithms.

In the case with 50 dimensions, Wilcoxon’s rank-sum test results
(See Table 6) suggest that SAEA-HAS and SAEA-RFS show similar
performance on the test problems F2 and F4. SAEA-HAS and SAEA-UGC
show better convergence performance than the other four SAEAs on
the 5 uni-modal test functions with 50 dimensions. SAEA-HAS, LSADE
and SAEA-RFS show similar performance on multi-modal functions
with 50 dimensions. As for the complicated multi-modal test function
with 50 dimensions (F9), SAEA-HAS offers better performance than

HESNFO, LSADE and SAEA-RFS. SAEA-HAS and LSADE have similar
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Fig. 6. Total computation time (s) of different SAEAs on the twelve benchmark test problems under different dimensions.
Fig. 7. The geometry of the Yagi-Uda antenna.

convergence performance on the three shifted test problems (F10-F12).
The Friedman test results listed in Table 6 show that SAEA-HAS has
the minimum average ranking on the test functions with 50 dimen-
sions, which suggests that SAEA-HAS shows better adaptability to test
problems with different characteristics than the other five SAEAs.
14
Fig. 8. Convergence curves of different SAEAs for the Yagi-Uda antenna design
problem.

As for the case with high-dimension test problems (𝐷 = 100),
SAEA-HAS obtains the best average optimal fitness on 7 of the 12 test
problems. SAEA-HAS performs better than or similar to SAEA-RFS on
9 of the 12 test functions (See Table 7). The performance of SAEA-
HAS on valley-shaped test functions with high-dimension (F2, F5) is
unsatisfactory. The Friedman test results listed in Table 7 show that
SAEA-HAS has better overall performance in obtaining optimization
results than compared algorithms, indicating that SAEA-HAS shows
better robustness and convergence ability than compared algorithms
on high dimensional test problems.
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Fig. 9. The best radiation patterns of the Yagi-Uda antenna design problem obtained by SAEA-HAS and compared SAEAs.
It can be observed from Tables 5 to 7 that SAEA-HAS can provide
better overall optimization performances in the 12 test problems than
the other five SAEAs. SAEA-HAS and LSADE have similar convergence
performance on the multi-modal test functions with low and medium
dimensions. In addition, it is worth noting that SAEA-HAS can maintain
good performance in obtaining better optimization results when the
dimension of test problems increases.

4.7. Computational costs analysis

The total computation time of different SAEAs on all the test prob-
lems under different dimensions (𝐷 = 10, 30, 50, 100) is shown in Fig. 6.
The computational time of each SAEA is computed by the 𝑡𝑖𝑐 and 𝑡𝑜𝑐
functions in MATLAB. As shown in Fig. 6, LSADE and SAEA-HAS have
smaller computational costs than the other four algorithms on the test
problems with 10 dimensions. Since SAEA-UGC and HESNFO include
ensembles of surrogates in the construction process, the computational
cost of these two algorithms is higher than that of the other four SAEAs.
As the dimension increases, the computational costs of SAEA-UGC and
HESNFO increase dramatically. SAEA-HAS exhibits well computational
efficiency on medium dimensional test problems (𝐷 = 30, 50). In high-
dimensional test problems, the computational efficiency of SAEA-RFS
is higher than that of the other five SAEAs, and the computational costs
of SAEA-HAS and aRBF-NFO are similar on test problems with 100
dimensions.

4.8. Application to Yagi-Uda antenna optimization problem

Geometry parameters significantly influence the radiation patterns
of antennas; an optimal set of shape parameters is crucial for the design
of antennas. The Yagi-Uda antenna is a radiating structure widely
applied in various commercial fields. In this example, the above six
15
SAEAs are employed to optimize the structure of the Yagi-Uda antenna.
The geometry of the Yagi-Uda antenna in Fig. 7 includes 10 design
variables, namely the length of the reflector 𝑥1, lengths of the four
directors 𝑥2, 𝑥3, 𝑥4, 𝑥5, the reflector spacing 𝑥6 and the four director
spacings 𝑥7, 𝑥8, 𝑥9, 𝑥10. The initial design values of the Yagi-Uda antenna
and the search ranges of different design variables are provided in
Table 8, 𝜆 represents the wavelength. All the parameters in the center
of the VHF band are the same as in Yu, Liang, Zhao et al. (2022). The
optimization objective function of this design problem is to obtain a
considerable value in the 90-degree direction, a smaller value in the
270-degree direction and a larger maximum power value between the
elevation beam width-angle boundaries.

The Antenna Toolbox in MATLAB 2018b is employed to analyze the
objective value. The experimental settings of the six SAEAs are the same
as those introduced in Section 4.1. Each algorithm performs 20 times
independently to avoid randomness.

Table 9 and Fig. 8 show the average optimization results of the
six algorithms on the Yagi-Uda antenna design problem. The results
in Table 9 and Fig. 8 indicate that SAEA-HAS has better optimization
results and convergence ability than the other five SAEAs on the Yagi-
Uda antenna design problem. The best-optimized radiation patterns of
the Yagi-Uda antenna obtained by the algorithms and the radiation
pattern of the initial design are shown in Fig. 9. Apparently, the
initial design of the antenna cannot achieve a high directivity in the
preferred direction. SAEA-HAS obtained the best radiation pattern and
average objective values. The optimal design of SAEA-HAS has a large
improvement in the radiation pattern. The optimized Yagi-Uda antenna
obtained by SAEA-HAS achieves a forward directivity of 10.5 dBi. The
front-to-back ratio is 67.4 dB, which is also part of the optimizer’s
maximization quantity.
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Fig. 10. Sensitivity analysis of parameters in SAEA-HAS to optimization results of Yagi-Uda design problem.
Table 9
Optimization results of different SAEAs on the Yagi-Uda antenna design problem.

Problem Metric SAEA-HAS HESNFO SAEA-UGC LSADE SAEA-RFS aRBF-NFO

Yagi-Uda antenna design
Best −7.788E+01 −5.710E+01 −5.710E+01 −5.710E+01 −7.147E+01 −6.316E+01
Mean −5.868E+01 −4.704E+01 −4.676E+01 −4.676E+01 −5.018E+01 −5.558E+01
Std. ±6.961E+00 ±2.602E+00 ±2.434E+00 ±2.434E+00 ±7.095E+00 ±5.595E+00

+∕ ≈ ∕− NA + + + + +
Table 10
Ranges of the four parameters.

Parameter Default value Range

𝑁𝑝 100 [10, 100]
𝑁𝑚𝑓 50 [10, 100]
𝑝𝑐 1 [0.1, 1]
𝑝𝑚 0.1 [0.1, 1]

4.9. Sensitivity analysis of parameters in SAEA-HAS

In this section, take the Yagi-Uda antenna optimization problem
as an example, we have tested the sensitivity of the parameters that
influence the optimization search process in SAEA-HAS, including pop-
ulation size 𝑁𝑝, maximum number of extra fitness evaluations 𝑁𝑚𝑓 ,
crossover and mutation probabilities 𝑝𝑐 , 𝑝𝑚. When studying a certain
parameter, the settings of the other three parameters are kept consistent
with those in Section 4.8. The intervals of these four parameters are
shown in Table 10, and ten points are uniformly taken for each pa-
rameter in the interval to study the sensitivity of the parameter on the
optimization result. The SAEA-HAS performs independently 20 times in
each experiment.

From Fig. 10, we can see that 𝑁𝑚𝑓 has the most significant influence
16

on the convergence of the entire optimization result. With the increase
of 𝑁𝑚𝑓 , the convergence of the optimization results of the algorithm is
better, indicating that more real fitness evaluations in the online SAEA
can effectively improve the performance of the algorithm. In addition,
when the crossover probability is greater than 0.4, the convergence
of the algorithm will be improved to a certain extent. The population
size and the mutation probability have no great influence on the
convergence of the proposed algorithm. As for the mutation probability,
when its value is 0.6, the convergence of the algorithm is relatively
high.

5. Conclusion

To inherit the advantages of cut-HDMR modeling and bridge the
gap between cut-HDMR and online SAEAs, this paper developed a
surrogate-assisted evolutionary algorithm with the hierarchical surro-
gate technique and adaptive infill strategy (SAEA-HAS). Inspired by
the cut-HDMR modeling, we developed a novel composite surrogate
model constructed by the first-order cut-HDMR model and an error
value-based surrogate model. An internal contrastive analysis method
is applied to build the hierarchical surrogate model. Then an adaptive
infill strategy is proposed to update the HSM during optimization and
balance the exploration and exploitation of the surrogate-assisted evo-
lutionary search. The effectiveness of SAEA-HAS is verified by twelve
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Table A.1
The details of benchmark test problems.

Function Characteristics Mathematical formulation Range

Ellipsoid Uni-modal, Bowl-shaped 𝑓 (𝑥) =
𝐷
∑

𝑖=1
𝑖𝑥2𝑖 𝑥𝑖 ∈ [−5.12∕2, 5.12]

Rosenbrock Uni-modal, Valley-shaped 𝑓 (𝑥) =
𝐷−1
∑

𝑖=1
[100(𝑥𝑖+1 − 𝑥2𝑖 )

2 + (𝑥𝑖 − 1)2] 𝑥𝑖 ∈ [−5, 10]

Rotated Hyper-Ellipsoid Uni-modal, Bowl-shaped 𝑓 (𝑥) =
𝐷
∑

𝑖=1

𝑖
∑

𝑗=1
𝑥2𝑗 𝑥𝑖 ∈ [−65.536∕2, 65.536]

Trid Uni-modal, Bowl-shaped 𝑓 (𝑥) =
𝐷
∑

𝑖=1
(𝑥𝑖 − 1)2 −

𝐷
∑

𝑖=2
𝑥𝑖𝑥𝑖−1 𝑥𝑖 ∈ [−36∕2, 36]

Dixon-Price Uni-modal, Valley-shaped 𝑓 (𝑥) = (𝑥1 − 1)2 +
𝐷
∑

𝑖=2
𝑖(2𝑥2𝑖 − 𝑥𝑖−1)

2 𝑥𝑖 ∈ [−10∕2, 10]

Ackley Multi-modal, Many local minima 𝑓 (𝑥) = −20 exp(−0.2

√

1
𝐷

𝐷
∑

𝑖=1
𝑥2𝑖 ) − exp( 1

𝐷

𝐷
∑

𝑖=1
cos(2𝜋𝑥𝑖)) + 20 + exp(1) 𝑥𝑖 ∈ [−32.768∕2, 32.768]

Griewank Multi-modal, Many local minima 𝑓 (𝑥) =
𝐷
∑

𝑖=1

𝑥2𝑖
4000

−
𝐷
∏

𝑖=1
cos( 𝑥𝑖

√

𝑖
) + 1 𝑥𝑖 ∈ [−600∕2, 600]

Rastrigin Multi-modal, Many local minima 𝑓 (𝑥) = 10𝐷 +
𝐷
∑

𝑖=1
[𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖)] 𝑥𝑖 ∈ [−5.12∕2, 5.12]

Styblinski-Tang Multi-modal, Many local minima 𝑓 (𝑥) = 1
2

𝐷
∑

𝑖=1
(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖) 𝑥𝑖 ∈ [−5∕2, 5]

Shifted Rosenbrock Shifted, Valley-shaped 𝑓 (𝑥) =
𝐷−1
∑

𝑖=1
[100(𝑧𝑖+1 − 𝑧2𝑖 )

2 + (𝑧𝑖 − 1)2] + 𝑓_𝑏𝑖𝑎𝑠1 , 𝑧 = 𝑥 − o + 1 𝑥𝑖 ∈ [−100, 100]

Shifted Rotated Griewank Shifted, Rotated 𝑓 (𝑥) =
𝐷
∑

𝑖=1

𝑧2𝑖
4000

−
𝐷
∏

𝑖=1
cos( 𝑧𝑖

√

𝑖
) + 1 + 𝑓_𝑏𝑖𝑎𝑠2 , 𝑧 = (𝑥 − o) ∗ M 𝑥𝑖 ∈ [0, 600]

Shifted Rastrigin Shifted, Many local minima 𝑓 (𝑥) =
𝐷
∑

𝑖=1
[𝑧2𝑖 − 10 cos(2𝜋𝑧𝑖) + 10] + 𝑓_𝑏𝑖𝑎𝑠3 , 𝑧 = 𝑥 − o 𝑥𝑖 ∈ [−5, 5]
w
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benchmark test problems and a Yagi-Uda antenna optimization prob-
lem that requires expensive simulations. We choose five SAEAs for com-
parison. Based on the experimental results, the following conclusions
can be drawn:

• In most test problems (7 out of 9), the global prediction accuracy
of HSM is much higher than that of the stand-alone RBF model
under different dimensions (10, 30, 50, 100), indicating that the
proposed HSM has good global prediction accuracy on both uni-
modal and multi-modal problems. The contrastive analysis can
effectively improve the robustness of HSM.

• SAEA-HAS with AIS shows better performance than that of SAEA-
HAS with only performance-based fill criteria. AIS can improve
the convergence performance of the proposed SAEA-HAS and
enhance the exploration to exploitation of the surrogate-assisted
evolutionary search. In addition, when the difference between the
maximum function value and the minimum function value in the
database increases, the AIS strategy will increase the mutation
range, thereby adaptively improving the exploration ability of
SAEA-HAS.

• According to the Friedman test results, SAEA-HAS has better over-
all performance than the other five SAEAs on low-dimensional
test problems. The test results show that SAEA-HAS has better
robustness and convergence ability on low-dimensional test prob-
lems than the other five SAEAs. Since SAEA-UGC and HESNFO
include ensembles of surrogates in the construction process, the
computational cost of these two algorithms is higher than that of
the other four SAEAs.

• SAEA-HAS and LSADE show similar performance on multi-modal
functions with medium and low dimensions. SAEA-HAS can pro-
vide better overall optimization performances in the high dimen-
sional test problems than the compared SAEAs.

• SAEA-HAS has better optimization results and convergence ability
than the other five SAEAs on the Yagi-Uda antenna design prob-
lem. SAEA-HAS obtained the best radiation patterns and average
objective values. The optimized design of SAEA-HAS shows a
17

significant improvement in the radiation pattern.
The experimental results in this work show that SAEA-HAS has
better overall performance in the test problems, validating the effective-
ness of the proposed SAEA. SAEA-HAS is expected to be widely applied
in real-world optimization problems.
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