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A B S T R A C T

Analytical solutions for transient water waves radiated by a circular cylinder in deep water are studied in
this paper. Within the framework of the potential flow and linear water wave theory, time-domain solutions
are analytically derived based on decomposition of the velocity potential consisting of an instantaneous term
and a memory term. These two terms are solved by satisfying the governing equations and initial boundary
conditions. Transient concentric water waves are further studied and evaluated for a pulsating circular cylinder
which expands and contracts radially. Results are compared with those from other numerical models with a
good agreement in terms of wave elevation on the free surface. Analytical solutions obtained in this work can
be considered as a benchmark in time-domain analysis for linear hydrodynamic problems, and are of help to
the theory and application of wavemakers and transient water waves.
1. Introduction

With the dramatically fast development of deep sea exploitations
and offshore engineering constructions, reliable predictions of wave-
induced motions and loads on ships and marine structures are of
significant importance to their designs and operations at sea. Though
commercial softwares and open-source packages based on the vis-
cous flow theory become more and more popular along with per-
formance improvements of computers and developments of efficient
algorithms (Ferziger and Peric, 2002; Moukalled et al., 2015), the
potential flow theory based methodology (Newman, 1977; Faltinsen,
1990) is still widely applied to solve problems such as wave-structure
interactions due to the much higher efficiency comparing with the
former approach and the reasonable agreement from comparisons with
experimental results. Within the framework of the potential flow the-
ory, it is possible to obtain analytical solutions, which can be regarded
as the most straightforward to study the real or simplified models
comparing with either numerical simulations or physical experiments.
Essential physical features and phenomena may be further revealed and
explained mathematically through explicit analytical solutions.

Though frequency-domain methods are widely applied when con-
sidering rapid evaluation of prototype designs, they have limited ca-
pability for transient problems. Time-domain analysis, helpful in iden-
tifying and solving transient linear and nonlinear problems, is a direct
and powerful way to give detailed descriptions of the real world, either
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in the theoretical analysis or in the numerical simulation. According
to the ITTC (2011) report, time-domain approaches are quickly re-
placing frequency-domain ones for many practical applications due to
advantages in the extension to the analysis of nonlinear motion and
structural loads. Following the early pioneering work of Finkelstein
(1957) and Cummins (1962), researchers have developed numerical
methods to solve ship and marine hydrodynamic problems in the time
domain. The free surface Green function is used to solve the radiation
problem of a floating body with zero forward speed in Beck and Liapis
(1987), with non-zero forward speed in Sen (2002). Kring (1994)
applies the Rankine source to study motions of a ship travelling in
waves. A hybrid method based on the fluid domain decomposition
strategy is used in Liu and Papanikolaou (2011) and Tang et al. (2014),
where the Rankine source is applied in the interior subdomain and the
free surface Green function is used in the exterior subdomain. Besides,
a high order boundary element method (HOBEM) based on bi-quadratic
shape functions is employed in Chen et al. (2018b), and the Taylor
Expansion Boundary Element Method (TEBEM) is utilised to solve the
boundary integral equation in Chen et al. (2021). A novel multi-domain
method is developed in Chen et al. (2018a) and Li et al. (2021) where
the velocity potential and its radial derivative are expanded by basis
functions on the mesh-free control surface. The Harmonic Polynomial
Cell method is put forward in Shao and Faltinsen (2014) to solve
029-8018/© 2022 Elsevier Ltd. All rights reserved.
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boundary value problems governed by 3D Laplace equation. How-
ever, the validation of numerical models and computer programs are
done systematically by comparing with experimental data, simulation
results and/or analytical solutions in frequency domain representing
the steady state. The prominent advantage of time-domain approaches
over frequency-domain ones to solve transient problems is weakened
in some sense since real-time comparisons especially in the stage of
development are missing.

Cylindrical structures are of ocean engineering interest and are
common seen such as spar, tension leg platform, bridge pier, or even
oscillating water columns devices for the extraction of energy from
waves. Analytical solutions associated with circular cylinders are there-
fore fundamental and essential. Wave diffraction by a circular cylinder
is first solved in Havelock (1940) for infinite water depth and in Mac-
Camy and Fuchs (1954) for finite water depth. The scattering of water
waves by an array of vertical circular cylinders is investigated in Linton
and Evans (1990), the theory in which is further applied in Walker
and Eatock Taylor (2005) to consider the interaction of a focused
wave group with a cylinder array. An exact solution for the diffraction
of short-crested waves incident on a circular cylinder is presented
in Zhu (1993). Second-order wave diffraction by an array of cylinders
is studied in Wang and Wu (2007) by a finite-element-based time
domain method. The linearised hydrodynamic radiation problem for
two concentric, free surface piercing truncated vertical cylinders is
analysed in Mavrakos (2004).

Much efforts have been made to derive analytical solutions in the
field of naval architecture and ocean engineering, though most of
existing analytical solutions are based on frequency domain analysis
and rigid assumptions for idealised geometries such as the sphere and
cylinder. The added mass and damping coefficients associated with
the periodic motions of a floating hemisphere are derived in Hulme
(1982). Zheng and Zhang (2015) presents an analytical model based
on the linearised velocity potential theory and the image theory to
predict wave diffraction from a truncated cylinder in front of a vertical
wall. Water wave interactions with a floating and bottom-mounted
surface-piercing compound cylinder are analytically investigated based
on the eigenfunction expansion method in Sarkar and Bora (2019a,b)
for porous cases and in Sarkar and Bora (2020) for partial-porous cases.
There are few references on analytical solutions for transient wave-
structure interaction. One can be found in Dai (1998) for wave diffrac-
tion by a circular cylinder mounted on the seabed. The wavemaker
problem is a typical wave-structure interaction, and a Fourier-integral
method to obtain transient solutions is developed in Joo et al. (1990).
Given that transient and steady-state water waves generated by motions
of a cylinder or rather a cylindrical wavemaker in the water of finite
depth have been derived analytically in McIver (1994) and Zou (2005),
the present study is motivated to derive analytical solutions for the
deep water case. They shall enrich time-domain analytical solutions of
hydrodynamic problems, being of significant importance to reveal the
evolution of transient waves, and to validate new developed numerical
models and algorithms for time-domain hydrodynamic analyses.

The rest of this paper is organised as follows. Detailed derivations
of analytical solutions for transient water waves radiated by a circular
cylinder are presented in Section 2. Transient concentric waves gener-
ated by a flexible pulsating cylinder are analytically studied in terms
of wave elevation and energy, numerically evaluated and illustrated in
Section 3. Finally, concluding remarks are addressed in Section 4.

2. Mathematical model and its solution

We consider a semi-infinite fluid domain limited on the top by the
free surface. An infinitely long circular cylinder with radius 𝑐 locates
vertically from the seabed to pierce the free surface and water waves
are generated by any motion of this cylinder. For the sake of simplicity,
a cylindrical coordinate system (𝑟, 𝜃, 𝑧) is introduced with 𝑧 = 0 plane
coinciding with the undisturbed free surface and 𝑜𝑧 axis orienting
2

Fig. 1. Definition sketch.

positively upwards, 𝑟 = 0 being the cylinder axis as shown in Fig. 1 .
The normal direction on cylinder surface 𝑟 = 𝑐 is defined to be positive
when pointing into the fluid domain, which coincides with the radial
direction.

In present study, the fluid is assumed inviscid, incompressible and
the flow is irrotational. The surface tension at the free surface is also
assumed negligible. The flow field can be described by the velocity
potential 𝛷 which is governed by the Laplace equation :

∇2𝛷 = 0. (1)

The exact kinematic boundary condition on the free surface gives :
𝜕𝛷
𝜕𝑧

=
𝜕𝜂
𝜕𝑡

+ 𝜕𝛷
𝜕𝑥

𝜕𝜂
𝜕𝑥

+ 𝜕𝛷
𝜕𝑦

𝜕𝜂
𝜕𝑦
, on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), (2)

and the exact dynamic boundary condition on the free surface gives :

𝜂 = −1
𝑔
( 𝜕𝛷
𝜕𝑡

+ 1
2
∇𝛷 ⋅ ∇𝛷), on 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), (3)

where 𝜂(𝑥, 𝑦, 𝑡) represents the vertical elevation of any point on the free
surface with Cartesian coordinates 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, and 𝑔
is the gravitational acceleration. In this study, assumptions that both
small amplitude motions and small velocities of the moving cylinder,
small wave heights are adopted. The wave slopes and derivatives of
the velocity potential will be small quantities. Significant nonlinear
effects will occur if the cylinder moves with large displacements, and
this will not be discussed in this paper. It is consistent to impose the first
order boundary condition on the undisturbed plane of the free surface
𝑧 = 0. Following the linearisation of free-surface boundary conditions
by neglecting the second and higher order terms (Newman, 1977; Dai,
1998), we have :
𝜕𝜂
𝜕𝑡

= 𝜕𝛷
𝜕𝑧

on 𝑧 = 0, (4)

and

𝜂 = −1
𝑔
𝜕𝛷
𝜕𝑡

on 𝑧 = 0, (5)

where expansions of the velocity potential and its derivatives in Taylor
series about 𝑧 = 0 are applied. From (4) and (5), the linearised
boundary condition on the free surface finally gives :

𝜕2𝛷
𝜕𝑡2

+ 𝑔 𝜕𝛷
𝜕𝑧

= 0, on 𝑧 = 0. (6)

As on the free surface, the body boundary condition is also imposed
on the cylinder’s mean position, 𝑟 = 𝑐 :
𝜕𝛷 = 𝑉 (𝑡), on , (7)

𝜕𝑛
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where  denotes the average wet surface of the moving cylinder and
(𝑡) is the normal component of cylinder velocity. At infinity, we

uppose there are no waves or fluid motions and we have :

𝛷 → 0, for 𝑟 → ∞ or 𝑧→ −∞. (8)

To enclose the transient problem, initial conditions are given as :

𝛷 = 0, at 𝑡 = 0, (9)
𝜕𝛷
𝜕𝑡

|

|

|𝑡=0
= 0, on 𝑧 = 0. (10)

Similar to the method proposed by Cummins (1962), applied in Dai
(1998) for the transient solution of the wave diffraction around a
seabed-mounted circular cylinder, the velocity potential 𝛷 for any field
point 𝑝(𝑟, 𝜃, 𝑧) and time 𝑡 can be decomposed into two terms :

𝛷(𝑝, 𝑡) = 𝛷𝑇 +𝛷𝑀 , (11)

with the instantaneous term 𝛷𝑇 and the memory term 𝛷𝑀 being :

𝛷𝑇 = ∬
𝛹 (𝑝, 𝑞)𝑉 (𝑡)d𝑆, (12a)

𝑀 = ∫

𝑡

0 ∬
𝜒(𝑝, 𝑞, 𝑡 − 𝜏)𝑉 (𝜏)d𝑆d𝜏, (12b)

here 𝑞(𝑐, 𝜃𝑞 , 𝑧𝑞) represents a source point on . Furthermore, 𝛹 in the
instantaneous term 𝛷𝑇 satisfies :

∇2𝛹 = 0, (13a)

𝛹 = 0, on 𝑧 = 0, (13b)
𝜕𝛹
𝜕𝑟

= 1
𝑐
𝛿(𝑧 − 𝑧𝑞)𝛿(𝜃 − 𝜃𝑞), on 𝑟 = 𝑐, (13c)

𝛹 → 0, for 𝑟 → ∞ or 𝑧→ −∞, (13d)

nd 𝜒 in the memory term 𝛷𝑀 satisfies :

2𝜒 = 0, (14a)
𝜕2𝜒
𝜕𝑡2

+ 𝑔
𝜕𝜒
𝜕𝑧

= 0, on 𝑧 = 0, (14b)

𝜕𝜒
𝜕𝑟

= 0, on 𝑟 = 𝑐, (14c)

𝜒 → 0, for 𝑟 → ∞ or 𝑧→ −∞, (14d)

= 0, at 𝑡 = 0, (14e)
𝜕𝜒
𝜕𝑡

|

|

|𝑡=0
= −𝑔 𝜕𝛹

𝜕𝑧
, on 𝑧 = 0. (14f)

The Laplace operator ∇2 in the cylindrical coordinate system is
iven as :

2 ≡ 1
𝑟
𝜕
𝜕𝑟

(𝑟 𝜕
𝜕𝑟

) + 1
𝑟2

𝜕2

𝜕𝜃2
+ 𝜕2

𝜕𝑧2
. (15)

y applying the method of variable separation in (15) and boundary
onditions in (13), and using the following identities associated with
he Dirac delta function (Jeffrey and Dai, 2008),

(𝜃 − 𝜃𝑞) =
1
2𝜋

∞
∑

𝑛=0
𝜖𝑛 cos [𝑛(𝜃 − 𝜃𝑞)], 𝜖0 = 1, 𝜖𝑛 = 2(𝑛 ≥ 1), (16a)

𝛿(𝑧 − 𝑧𝑞) =
1
2𝜋 ∫

∞

−∞
ei𝑘(𝑧−𝑧𝑞 )d𝑘 = 2

𝜋 ∫

∞

0
sin (𝑘𝑧) sin (𝑘𝑧𝑞)d𝑘, (16b)

he term 𝛹 can be solved and expressed as :

(𝑝, 𝑞) = 1
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞)∫

∞

0

𝐾𝑛(𝑘𝑟)
𝐾 ′
𝑛(𝑘𝑐)

sin (𝑘𝑧) sin (𝑘𝑧𝑞)
𝑘

d𝑘, (17)

with the definition 𝛩𝑛(𝜃, 𝜃𝑞) = 𝜖𝑛 cos [𝑛(𝜃 − 𝜃𝑞)] for brevity. Here 𝐾𝑛(𝑘𝑐)
is the 𝑛th order modified Bessel function of the second kind, and
𝐾 ′
𝑛(𝑘𝑐) stands for the first order derivative of 𝐾𝑛(𝑘𝑐) with respect to

the argument (𝑘𝑐). It is known that terms 𝜒 and 𝛹 in (12) are linked
3

Fig. 2. Contour integral 𝐼 defined by (19) in the complex 𝑘-plane, where ℜ{⋅} and
{⋅} represent to take the real and imaginary part, respectively.

y the initial boundary condition on the free surface (14f), which may
e rewritten as follows after substituting (17),

𝜕𝜒
𝜕𝑡

|

|

|𝑡=0
=

−𝑔
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞)∫

∞

0

𝐾𝑛(𝑘𝑟)
𝐾 ′
𝑛(𝑘𝑐)

sin (𝑘𝑧𝑞)d𝑘. (18)

Define an integral similar as the one in (18) by :

𝐼 = ∫

∞

0

𝐾𝑛(𝑘𝑟)
𝐾 ′
𝑛(𝑘𝑐)

e−i𝑘𝑧d𝑘. (19)

y considering the contour depicted in Fig. 2, the integrals along the
omplete contour are defined by that along the real 𝑘-axis 𝐼 itself, that
𝑅 along the one-quarter-circle path of radius 𝑘𝑚 and that 𝐼i1 along the
ertical path with ℜ{𝑘} = 0. According to the theorem of Cauchy about
he complex contour integral (Jeffreys and Jeffreys, 1956), the sum of
he above three integral is zero, namely,

+ 𝐼𝑅 + 𝐼i1 = 0. (20)

oreover, we may have 𝐼 = −𝐼i1 since 𝐼𝑅 = 0 due to the Jordan’s
emma.

For a further evaluation of 𝐼i1 on the imaginary axis, we introduce
= i𝑝 and 𝐼i1 yields :

i1 = ∫

0

∞

𝐾𝑛(i𝑝𝑟)
𝐾 ′
𝑛(i𝑝𝑐)

e𝑧𝑝id𝑝. (21)

y using the relations between 𝐾𝑛(𝑍) and the 𝑛th order Hankel func-
ions of the second kind 𝐻 (2)

𝑛 (𝑍) (Abramowitz and Stegun, 1964),

𝑛(𝑍) = −𝜋i
2
e−𝑛𝜋i∕2𝐻 (2)

𝑛 (−i𝑍), −𝜋
2
< arg (𝑍) ≤ 𝜋. (22)

It can be concluded that on the positive imaginary axis :

𝐾𝑛(i𝑝𝑟)
𝐾 ′
𝑛(i𝑝𝑐)

= i
𝐻 (2)
𝑛 (𝑝𝑟)

𝐻 (2)′
𝑛 (𝑝𝑐)

. (23)

By substituting (23) into (21), a new form of integral 𝐼 is given as :

𝐼 = −∫

∞

0

𝐻 (2)
𝑛 (𝑘𝑟)

𝐻 (2)′
𝑛 (𝑘𝑐)

e𝑘𝑧d𝑘. (24)

he term associated with 𝐻 (2)
𝑛 (⋅) and its first order derivative 𝐻 (2)′

𝑛 (⋅)
an be arranged as :

𝐻 (2)
𝑛 (𝑘𝑟)
(2)′

= 𝐹 𝑟𝑒𝑛 (𝑘, 𝑟, 𝑐) − i𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐), (25)

𝐻𝑛 (𝑘𝑐)
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in which,

𝐹 𝑟𝑒𝑛 (𝑘, 𝑟, 𝑐) = ℜ{
𝐻 (2)
𝑛 (𝑘𝑟)

𝐻 (2)′
𝑛 (𝑘𝑐)

} =
𝐽𝑛(𝑘𝑟)𝐽 ′

𝑛(𝑘𝑐) + 𝑌𝑛(𝑘𝑟)𝑌
′
𝑛 (𝑘𝑐)

[𝐽 ′
𝑛(𝑘𝑐)]2 + [𝑌 ′

𝑛 (𝑘𝑐)]2
, (26a)

𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐) = −ℑ{
𝐻 (2)
𝑛 (𝑘𝑟)

𝐻 (2)′
𝑛 (𝑘𝑐)

} =
𝐽 ′
𝑛(𝑘𝑐)𝑌𝑛(𝑘𝑟) − 𝐽𝑛(𝑘𝑟)𝑌

′
𝑛 (𝑘𝑐)

[𝐽 ′
𝑛(𝑘𝑐)]2 + [𝑌 ′

𝑛 (𝑘𝑐)]2
, (26b)

where 𝐽𝑛(𝑘𝑐), 𝑌𝑛(𝑘𝑐), 𝐽 ′
𝑛(𝑘𝑐) and 𝑌 ′

𝑛 (𝑘𝑐) stands for 𝑛th order Bessel
function of the first kind and second kind, and corresponding first order
derivatives with respect to the argument (𝑘𝑐). By comparing the integral
in (18) and 𝐼 in (19), we have :

∫

∞

0

𝐾𝑛(𝑘𝑟)
𝐾 ′
𝑛(𝑘𝑐)

sin (𝑘𝑧)d𝑘 = −ℑ{𝐼} = −∫

∞

0
𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐)e𝑘𝑧d𝑘. (27)

ubstitute (27) into (18), the initial condition associated with 𝜒 is
herefore given by :

𝜕𝜒
𝜕𝑡

|

|

|𝑡=0
=

𝑔
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞)∫

∞

0
𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐)e𝑘𝑧𝑞 d𝑘. (28)

By using other boundary conditions and initial conditions in (14), the
term 𝜒 may be further solved and expressed as :

𝜒 =
𝑔
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞)∫

∞

0
e𝑘(𝑧+𝑧𝑞 )𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐)

sin (𝛽𝑡)
𝛽

d𝑘, (29)

ith 𝛽 =
√

𝑔𝑘.
As a consequence, by substituting analytical expressions of 𝛹 in

(17) and 𝜒 in (29) into velocity potential components in (12), the
instantaneous term 𝛷𝑇 yields :

𝛷𝑇 = ∬

[

1
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞)∫

∞

0

𝐾𝑛(𝑘𝑟)
𝐾 ′
𝑛(𝑘𝑐)

sin (𝑘𝑧) sin (𝑘𝑧𝑞)
𝑘

d𝑘

]

𝑉 (𝑡)d𝑆,

(30a)

and the memory term 𝛷𝑀 yields :

𝛷𝑀 = ∫

𝑡

0 ∬

𝑔
𝜋2𝑐

∞
∑

𝑛=0
𝛩𝑛(𝜃, 𝜃𝑞) ×

∫

∞

0
e𝑘(𝑧+𝑧𝑞 )𝐹 𝑖𝑚𝑛 (𝑘, 𝑟, 𝑐)

sin [𝛽(𝑡 − 𝜏)]
𝛽

d𝑘𝑉 (𝜏)d𝑆d𝜏. (30b)

he wave elevation on the free surface may be determined by :

(𝑟, 𝜃, 𝑡) = − 1
𝑔
𝜕(𝛷𝑇 +𝛷𝑀 )

𝜕𝑡
|

|

|𝑧=0
. (31)

rom the expression of 𝛷𝑇 in (30a), it can be concluded that the
nstantaneous term 𝛷𝑇 makes no contribution to the wave elevation.

. Results and discussions

Though any kind of motions with small amplitudes can be imple-
ented on the circular cylinder, a periodic motion will be reported as

n example in this paper. Different from the conventional rigid-body
ssumption, the circular cylinder in this study is assumed to be flexible
nd it can contract with 𝑉 (𝑡) < 0 and expand with 𝑉 (𝑡) > 0 as shown

in Fig. 1.

3.1. Transient wave elevation

Supposing 𝑆(𝑧, 𝜃) is the stroke of the moving cylinder, the radial
displacement is given as :

𝑟(𝑧, 𝜃, 𝑡) = −
𝑆(𝑧, 𝜃)

2
cos (𝜔𝑡), (32)

here 𝜔 is the wavemaker frequency. In present study, we assume the
troke of the moving cylinder 𝑆(𝑧, 𝜃) to take the following form for the

sake of simplicity,

𝑆(𝑧, 𝜃) = 2𝐴e𝑘0𝑧 cos (𝑠𝜃), (33)
4

where the wavenumber 𝑘0 = 𝜔2∕𝑔 from the dispersion relationship in
eep water, 𝐴 represents the largest amplitude of the moving cylinder
an reach and 𝑠 is an integer to describe strokes along the direction of
ircumference. From the expression given by (33), it is obvious that the
mplitude or stroke decays exponentially with the increase of vertical
osition 𝑧, when ignoring circumferential variances. By substituting
33) into (32), the radial displacement yields :

(𝑧, 𝜃, 𝑡) = −𝐴e𝑘0𝑧 cos (𝜔𝑡) cos (𝑠𝜃), (34)

nd the normal velocity 𝑉 (𝑡) in (30) turns out to be :

(𝑡) =
𝐴𝑔𝑘0
𝜔

e𝑘0𝑧 sin (𝜔𝑡) cos (𝑠𝜃), (35)

hen the instantaneous term 𝛷𝑇 and the memory term 𝛷𝑀 in (30) are :

𝑇 =
−2𝐴𝑔𝑘0
𝜔𝜋

sin (𝜔𝑡) cos (𝑠𝜃)∫

∞

0

𝐾𝑠(𝑘𝑟)
𝐾 ′
𝑠(𝑘𝑐)

sin (𝑘𝑧)
𝑘2 + 𝑘20

d𝑘, (36a)

𝛷𝑀 =
2𝐴𝑔𝑘0
𝜔𝜋

cos (𝑠𝜃)∫

∞

0
e𝑘𝑧

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)
𝑘 + 𝑘0

𝛽 sin (𝜔𝑡) − 𝜔 sin (𝛽𝑡)
𝛽(𝑘 − 𝑘0)

d𝑘. (36b)

he wave elevation on the free surface non-dimensionalised by the
argest amplitude 𝐴 introduced in (33) may be obtained only from the
emory term 𝛷𝑀 and expressed as :

(𝑟, 𝜃, 𝑡) = −
2𝑘0
𝜋

cos (𝑠𝜃)∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)
𝑘 + 𝑘0

cos (𝜔𝑡) − cos (𝛽𝑡)
𝑘 − 𝑘0

d𝑘. (37)

Though the instantaneous term 𝛷𝑇 makes no contribution to the
wave elevation on the free surface as discussed after (31), it is of
interest to have a further analysis on the two separated terms 𝛷𝑇 and
𝛷𝑀 . Define another integral by :

𝐼 = ∫

∞

0

𝐾𝑠(𝑘𝑟)
𝐾 ′
𝑠(𝑘𝑐)

e−i𝑘𝑧

𝑘2 + 𝑘20
d𝑘. (38)

As shown in Fig. 3, the sum of all integrals in the complete contour :

𝐼 + 𝐼𝑅 + 𝐼i1 + 𝐼𝜖 = 0, (39)

ccording to the theorem of Cauchy about the complex contour inte-
ral. The integrals 𝐼i1 and 𝐼𝜖 can be given by :

i1 = −
∫

0

∞

𝐾𝑠(i𝑘𝑟)
𝐾 ′
𝑠(i𝑘𝑐)

e𝑘𝑧

(i𝑘)2 + 𝑘20
id𝑘 = −

∫

0

∞
i
𝐻 (2)
𝑠 (𝑘𝑟)

𝐻 (2)′
𝑠 (𝑘𝑐)

e𝑘𝑧

−𝑘2 + 𝑘20
id𝑘, (40a)

𝐼𝜖 = i(−𝜋
2
− 𝜋

2
)
𝐾𝑠(i𝑘𝑟)
𝐾 ′
𝑠(i𝑘𝑐)

e𝑘0𝑧
2i𝑘0

= − 𝜋
2𝑘0

i
𝐻 (2)
𝑠 (𝑘0𝑟)

𝐻 (2)′
𝑠 (𝑘0𝑐)

e𝑘0𝑧. (40b)

ince 𝐼𝑅 = 0 due to the Jordan’s Lemma, the integral 𝐼 in (39) may be
ewritten by :

= 𝜋
2𝑘0

i
𝐻 (2)
𝑠 (𝑘0𝑟)

𝐻 (2)′
𝑠 (𝑘0𝑐)

e𝑘0𝑧 + −
∫

∞

0

𝐻 (2)
𝑠 (𝑘𝑟)

𝐻 (2)′
𝑠 (𝑘𝑐)

e𝑘𝑧

𝑘2 − 𝑘20
d𝑘. (41)

Therefore, the integral in (36a) may be expressed as :

∫

∞

0

𝐾𝑠(𝑘𝑟)
𝐾 ′
𝑠(𝑘𝑐)

sin (𝑘𝑧)
𝑘2 + 𝑘20

d𝑘 = −𝜋
2𝑘0

𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧+−∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)e𝑘𝑧

𝑘2 − 𝑘20
d𝑘. (42)

oreover, 𝛷𝑇 in (36a) yields :

𝑇 =
𝐴𝑔
𝜔

sin (𝜔𝑡) cos (𝑠𝜃)[𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧 −
2𝑘0
𝜋

−
∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)e𝑘𝑧

𝑘2 − 𝑘20
d𝑘].

(43)

By comparing (43) and (36b), it is noted that the second term in
43) and the first term in (36b) will cancel out, and the final form of
otal velocity potential 𝛷 may also be given by :

= 𝐴𝑔 cos (𝑠𝜃)
[

sin (𝜔𝑡)
𝜔

𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧

−
2𝑘0 −

∫

∞ sin (𝛽𝑡) 𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)e𝑘𝑧

2 2
d𝑘

]

. (44)

𝜋 0 𝛽 𝑘 − 𝑘0



Ocean Engineering 266 (2022) 112783R. Li et al.

T
m

𝜂

∫

e

a
v

𝑉

B
t

R

t

𝜙

𝑡

C
n

𝜂

F
p

𝑡

Fig. 3. Contour integral 𝐼 defined by (38) in the complex 𝑘-plane.

he non-dimensional wave elevation on the free surface is then deter-
ined by (44), namely,

= cos (𝑠𝜃)

[

−𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐) cos (𝜔𝑡) +
2𝑘0
𝜋

−
∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)

𝑘2 − 𝑘20
cos (𝛽𝑡)d𝑘

]

,

(45)

which corresponds to the formula in (37). Referring to the imple-
mentation in Dai and He (1993), the principal value integral may be
numerically dealt with as follows :

−
∞

0

𝑓 (𝑘)
𝑘 − 𝑘0

d𝑘 = ∫

2𝑘0

0

𝑓 (𝑘) − 𝑓 (𝑘0)
𝑘 − 𝑘0

d𝑘 + ∫

∞

2𝑘0

𝑓 (𝑘)
𝑘 − 𝑘0

d𝑘. (46)

3.2. Asymptotic analysis

For analytical solutions, asymptotic forms are of interest and signif-
icance. Wave elevation on the free surface for 𝑡→ 0 and 𝑡→ ∞ will be
stimated in the following content.

For 𝑡 → 0 which represents the initial stage, following the similar
pproach in Zou (2005), we expand the normal velocity 𝑉 (𝑡), the
elocity potential 𝛷(𝑡) and the wave elevation 𝜂(𝑡) as follows :

(𝑡) =
∞
∑

𝑛=1
𝛼𝑛𝑡

𝑛 = 𝛼1𝑡 + 𝛼2𝑡2 + 𝛼3𝑡3 +⋯ , (47a)

𝛷(𝑡) =
∞
∑

𝑛=1
𝜙𝑛𝑡

𝑛 = 𝜙1𝑡 + 𝜙2𝑡
2 + 𝜙3𝑡

3 +⋯ , (47b)

𝜂(𝑡) =
∞
∑

𝑛=1
𝜂𝑛𝑡

𝑛 = 𝜂1𝑡 + 𝜂2𝑡2 + 𝜂3𝑡3 +⋯ . (47c)

From the body boundary conditions of 𝛹 and 𝜒 , we have :
𝜕𝛷
𝜕𝑟

= 𝜕
𝜕𝑟 ∬

𝛹 (𝑝, 𝑞)𝑉 (𝑡)d𝑆, on 𝑟 = 𝑐. (48)

y substituting (47b) and (47a) into (48), the left and right hand side
erms turn out to be :

LHS = 𝜕
𝜕𝑟

∞
∑

𝑛=1
𝜙𝑛𝑡

𝑛 =
∞
∑

𝑛=1
𝑡𝑛
𝜕𝜙𝑛
𝜕𝑟

, (49a)

HS = 𝜕
𝜕𝑟 ∬

𝛹 (𝑝, 𝑞)
∞
∑

𝑛=1
𝛼𝑛𝑡

𝑛d𝑆 =
∞
∑

𝑛=1
𝑡𝑛 𝜕
𝜕𝑟 ∬

𝛹 (𝑝, 𝑞)𝛼𝑛d𝑆 (49b)

hen we have :

𝑛 = 𝛹 (𝑝, 𝑞)𝛼𝑛d𝑆, on 𝑟 = 𝑐, 𝑛 = 1, 2, 3,… . (50)
5

∬
Moreover, substituting (47b) and (47c) into the kinematic boundary
condition on the free surface 𝜕𝜂∕𝜕𝑡 − 𝜕𝛷∕𝜕𝑧 = 0, we have :

𝑡0 ∶ 𝜂1 = 0, (51a)

1 ∶ 2𝜂2 −
𝜕𝜙1
𝜕𝑧

= 0, (51b)

𝑡2 ∶ 3𝜂3 −
𝜕𝜙2
𝜕𝑧

= 0, (51c)

or equivalently,

𝜂1 = 0, 𝜂2 =
1
2
𝜕𝜙1
𝜕𝑧

, 𝜂3 =
1
3
𝜕𝜙2
𝜕𝑧

. (52)

By substituting (52) and (50) into (47c), the wave elevation on the free
surface for 𝑡→ 0 can be expressed as :

𝜂 = 1
2
𝜕𝜙1
𝜕𝑧

|

|

|𝑧=0
𝑡2 + 1

3
𝜕𝜙2
𝜕𝑧

|

|

|𝑧=0
𝑡3 + 𝑂(𝑡4)

=
[

𝜕
𝜕𝑧 ∬

𝛹 (𝑝, 𝑞)(𝛼1
𝑡2

2
+ 𝛼2

𝑡3

3
)d𝑆

]

𝑧=0
+ 𝑂(𝑡4).

(53)

From the expansion of 𝑉 (𝑡) in (47a), it is obvious that :

∫

𝑡

0
𝑉 (𝜏)d𝜏 = ∫

𝑡

0

∞
∑

𝑛=1
𝛼𝑛𝜏

𝑛d𝜏 =
∞
∑

𝑛=1

𝛼𝑛
𝑛 + 1

𝑡𝑛+1 = 𝛼1
𝑡2

2
+ 𝛼2

𝑡3

3
+⋯ . (54)

Substitute (54) into (53), ignoring higher order quantities, then we
have :

𝜂 =
[

∫

𝑡

0

𝜕
𝜕𝑧 ∬

𝛹 (𝑝, 𝑞)𝑉 (𝜏)d𝑆d𝜏
]

𝑧=0
. (55)

onsequently, from the expressions of 𝛹 in (17) and 𝑉 in (35), the
on-dimensional wave elevation on the free surface for 𝑡→ 0 is :

(𝑟, 𝜃, 𝑡) = 2
𝜋
[1 − cos (𝜔𝑡)] cos (𝑠𝜃)∫

∞

0

𝐾𝑠(𝑘𝑟)
𝐾 ′
𝑠(𝑘𝑐)

−𝑘
𝑘2 + 𝑘20

d𝑘. (56)

As for 𝑡 → ∞, apply the dispersion relationship 𝛽2 = 𝑔𝑘 in (44),

𝛷 = 𝐴𝑔 cos (𝑠𝜃)
[

sin (𝜔𝑡)
𝜔

𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧

−
2𝑔𝑘0
𝜋

−
∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)e𝑘𝑧

𝛽2 + 𝜔2
2 sin (𝛽𝑡)
𝛽2 − 𝜔2

d𝛽

]

. (57)

It can be seen that only the contribution of 𝛽 = 𝜔 to the principal
value integral needs to be estimated. Use the Taylor expansion of 𝛽(𝑘)
at 𝑘 = 𝑘0,

𝛽(𝑘) = 𝛽(𝑘0) + 𝛽′(𝑘0)(𝑘 − 𝑘0) +⋯ = 𝜔 + 𝛽′(𝑘0)(𝑘 − 𝑘0) +⋯ , (58)

and apply the sum-difference product formula,

sin(𝛽𝑡) = sin(𝜔𝑡) cos [𝑡𝛽′(𝑘0)(𝑘 − 𝑘0)] + cos(𝜔𝑡) sin [𝑡𝛽′(𝑘0)(𝑘 − 𝑘0)]. (59)

rom the Fourier analysis in Wehausen and Laitone (1960), the princi-
al value integral in (57) is estimated as :

lim
→∞

−
∫

∞

0

𝐹 𝑖𝑚𝑠 (𝑘, 𝑟, 𝑐)e𝑘𝑧

𝛽2 + 𝜔2
2 sin (𝛽𝑡)
𝛽2 − 𝜔2

d𝛽 =
𝜋𝐹 𝑖𝑚𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧

2𝜔2
cos (𝜔𝑡)
𝜔

. (60)

Therefore, the velocity potential for 𝑡 → ∞ is rewritten as :

𝛷 = 𝐴𝑔 cos (𝑠𝜃)
[

sin (𝜔𝑡)
𝜔

𝐹 𝑟𝑒𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧 −
cos (𝜔𝑡)
𝜔

𝐹 𝑖𝑚𝑠 (𝑘0, 𝑟, 𝑐)e𝑘0𝑧
]

=
𝐴𝑔
𝜔

e𝑘0𝑧 cos (𝑠𝜃)ℑ

[

𝐻 (2)
𝑠 (𝑘0𝑟)

𝐻 (2)′
𝑠 (𝑘0𝑐)

ei𝜔𝑡
]

.
(61)

The corresponding non-dimensional wave elevation on the free surface
is :

𝜂(𝑟, 𝜃, 𝑡) = − cos (𝑠𝜃)ℑ

[

i
𝐻 (2)
𝑠 (𝑘0𝑟)

𝐻 (2)′
𝑠 (𝑘0𝑐)

ei𝜔𝑡
]

= −cos (𝑠𝜃)ℜ

[

𝐻 (2)
𝑠 (𝑘0𝑟)

𝐻 (2)′
𝑠 (𝑘0𝑐)

ei𝜔𝑡
]

.

(62)
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Using the asymptotic form of Hankel function 𝐻 (2)
𝑠 (𝑘0𝑟), we have :

𝜂(𝑟, 𝜃, 𝑡) = − cos (𝑠𝜃)ℜ

[

1
𝐻 (2)′
𝑠 (𝑘0𝑐)

√

2
𝜋𝑘0𝑟

e−i(𝑘0𝑟−𝑠𝜋∕2−𝜋∕4)ei𝜔𝑡
]

. (63)

t can be concluded that the amplitude of outgoing wave attenuates
ith the radial distance as 1∕

√

𝑟. Specially, the wave elevation given
in (62) represents concentric waves when 𝑠 = 0. Or rather the circular
cylinder is a pulsating wavemaker, expanding and contracting radially
with no 𝜃 dependency. And the corresponding wave elevation in (63)
turns out to be :

𝜂(𝑟, 𝑡) = ℜ

[

1
𝐻 (2)

1 (𝑘0𝑐)

√

2
𝜋𝑘0𝑟

e−i(𝑘0𝑟−𝜔𝑡−𝜋∕4)
]

. (64)

Furthermore, enforce 𝜂 = 0 in (64) and it is clear that :
√

2
𝜋𝑘0𝑟

𝐽1(𝑘0𝑐) cos 𝛾 + 𝑌1(𝑘0𝑐) sin 𝛾
𝐽 2
1 (𝑘0𝑐) + 𝑌

2
1 (𝑘0𝑐)

= 0, (65)

ith 𝛾 = 𝑘0𝑟 − 𝜔𝑡 − 𝜋∕4. The numerator being nil requires :

𝑛 =
1
𝑘0

[

𝑛𝜋 + arctan (𝛬) + 𝜋
4
+ 𝜔𝑡

]

, (66)

here 𝑛 is an integer and 𝛬 = −𝐽1(𝑘0𝑐)∕𝑌1(𝑘0𝑐). The wave length is
defined as 𝜆 = 𝑟𝑛+2 − 𝑟𝑛 = 2𝜋∕𝑘0, and the wave period is 𝑇 = 2𝜋∕𝜔.
More discussions on cylindrical wavemakers can be found in Dean and
Dalrymple (1991), where three types are summarised.

3.3. Energy analysis

It is of interest to further study concentric waves from the view of
energy since no literature on this has been reported to the authors’
knowledge. The total energy consists of two parts, the kinetic energy
due to the moving water particles, and the potential energy from
displacements of the free surface. Consider the fluid in a ring band
domain 𝛺, with radius from 𝑟1 to 𝑟2 with respect to the symmetry axis
of the circular cylinder.

For the kinetic energy in the ring band 𝛺, we have :

KE = 1
2
𝜌∫

𝜋

−𝜋 ∫

𝑟2

𝑟1
∫

𝜂

−∞
(𝑣2𝑟 + 𝑣

2
𝑧)𝑟d𝑧d𝑟d𝜃. (67)

From the velocity potential in (61) with 𝑠 = 0, we have :

𝑣𝑟 =
𝜕𝛷
𝜕𝑟

=
𝐴𝑔𝑘0
𝜔

e𝑘0𝑧 cos (𝑠𝜃)ℑ
⎡

⎢

⎢

⎣

𝐻 (2)′
0 (𝑘0𝑟)

𝐻 (2)′
0 (𝑘0𝑐)

ei𝜔𝑡
⎤

⎥

⎥

⎦

, (68a)

𝑣𝑧 =
𝜕𝛷
𝜕𝑧

=
𝐴𝑔𝑘0
𝜔

e𝑘0𝑧 cos (𝑠𝜃)ℑ

[

𝐻 (2)
0 (𝑘0𝑟)

𝐻 (2)′
0 (𝑘0𝑐)

ei𝜔𝑡
]

. (68b)

The sum of squares of 𝑣𝑟 and 𝑣𝑧 yields :

𝑣2𝑟 + 𝑣
2
𝑧 = (

𝐴𝑔𝑘0
𝜔

)2e2𝑘0𝑧
{

(ℑ

[

𝐻 (2)
1 (𝑘0𝑟)

𝐻 (2)
1 (𝑘0𝑐)

ei𝜔𝑡
]

)2

+ (ℑ

[

𝐻 (2)
0 (𝑘0𝑟)

−𝐻 (2)
1 (𝑘0𝑐)

ei𝜔𝑡
]

)2
}

. (69)

The integration with respect to the vertical variable 𝑧 gives :

(
𝐴𝑔𝑘0
𝜔

)2 𝑟
2𝑘0

{

(ℑ

[

𝐻 (2)
1 (𝑘0𝑟)

𝐻 (2)
1 (𝑘0𝑐)

ei𝜔𝑡
]

)2 + (ℑ

[

𝐻 (2)
0 (𝑘0𝑟)

−𝐻 (2)
1 (𝑘0𝑐)

ei𝜔𝑡
]

)2
}

+𝑂(𝐴3),

(70)

where the integral is truncated up to the mean free surface retaining
terms to the second order.

Substitute (70) to (67), ignoring the high order quantities, then the
kinetic energy gives :

KE =
𝜌𝜋

(
𝐴𝑔𝑘0 )2 [(𝑟, 𝑡)]𝑟2𝑟 , (71)
6

2𝑘0 𝜔 1
where the integral with respect to 𝑟 is defined by :

(𝑟, 𝑡) = 𝛬2
1 ∫

{

(ℑ
[

𝐻 (2)
1 (𝑘0𝑟)ei𝜑

]

)2 + (ℑ
[

−𝐻 (2)
0 (𝑘0𝑟)ei𝜑

]

)2
}

𝑟d𝑟, (72)

ith

1 =
|

|

|

1
𝐻 (2)

1 (𝑘0𝑐)
|

|

|

= 1
√

𝐽 2
1 (𝑘0𝑐) + 𝑌

2
1 (𝑘0𝑐)

, 𝜑 = 𝜔𝑡+arctan
𝑌1(𝑘0𝑐)
𝐽1(𝑘0𝑐)

. (73)

The two imaginary parts in the integrand are :

ℑ
[

𝐻 (2)
1 (𝑘0𝑟)ei𝜑

]

= 𝐽1(𝑘0𝑟) sin𝜑 − 𝑌1(𝑘0𝑟) cos𝜑, (74a)

ℑ
[

−𝐻 (2)
0 (𝑘0𝑟)ei𝜑

]

= −𝐽0(𝑘0𝑟) sin𝜑 + 𝑌0(𝑘0𝑟) cos𝜑. (74b)

Substituting (74) into (72), the integrand is grouped as :

𝑟
1
∑

𝑛=0
𝐽 2
𝑛 (𝑘0𝑟) sin

2 𝜑 + 𝑌 2
𝑛 (𝑘0𝑟) cos

2 𝜑 − 𝐽𝑛(𝑘0𝑟)𝑌𝑛(𝑘0𝑟) sin (2𝜑). (75)

Apply the following indefinite integral identity containing dual Bessel
functions in Watson (1966),

∫ 𝑟𝑛(𝑘𝑟)𝑛(𝑘𝑟)d𝑟 =

𝑟2

4

[

2𝑛(𝑘𝑟)𝑛(𝑘𝑟) − 𝑛−1(𝑘𝑟)𝑛+1(𝑘𝑟) − 𝑛+1(𝑘𝑟)𝑛−1(𝑘𝑟)
]

, (76)

here  and  stand for arbitrary Bessel functions of the first or second
inds. Ignoring the arguments (𝑘0𝑟) in Bessel functions, the integral 
ith respect to 𝑟 yields :

(𝑟, 𝑡) = 𝛬2
1

1
∑

𝑛=0

𝑟2

4
[

2𝐽 2
𝑛 − 2𝐽𝑛−1𝐽𝑛+1

]

sin2 𝜑

+ 𝑟2

4
[

2𝑌 2
𝑛 − 2𝑌𝑛−1𝑌𝑛+1

]

cos2 𝜑

− 𝑟2

4
[

2𝐽𝑛𝑌𝑛 − 𝐽𝑛−1𝑌𝑛+1 − 𝐽𝑛+1𝑌𝑛−1
]

sin (2𝜑). (77)

The average kinetic energy can be obtained by averaging (71) over
a wave period. It is obvious that :

1
𝑇 ∫

𝑡0+𝑇

𝑡0
sin2 𝜑d𝑡 = 1

𝑇 ∫

𝑡0+𝑇

𝑡0
cos2 𝜑d𝑡 = 1

2
, 1

𝑇 ∫

𝑡0+𝑇

𝑡0
sin (2𝜑)d𝑡 = 0.

(78)

herefore, the average kinetic energy is expressed as :

KE =
𝜌𝑔𝜋𝐴2

2
𝛬2
1

[

𝑟2

4

1
∑

𝑛=0

(

𝐽 2
𝑛 + 𝑌 2

𝑛 − 𝐽𝑛−1𝐽𝑛+1 − 𝑌𝑛−1𝑌𝑛+1
)

]𝑟2

𝑟1

. (79)

For the potential energy in the ring band 𝛺, we have :

PE = 𝜌𝑔 ∫

𝜋

−𝜋 ∫

𝑟2

𝑟1
∫

𝜂

0
𝑧𝑟d𝑧d𝑟d𝜃. (80)

Substituting (62) into (80) with 𝑠 = 0 yields :

PE =
𝜌𝑔
2
2𝜋𝐴2

∫

𝑟2

𝑟1
(ℜ

[

𝐻 (2)
0 (𝑘0𝑟)

𝐻 (2)′
1 (𝑘0𝑐)

ei𝜔𝑡
]

)2𝑟d𝑟. (81)

s the same notations in the kinetic energy analysis, the integration in
81) is straightforward and the corresponding indefinite integral gives :

2
1
𝑟2

4
[

(2𝐽 2
0 + 2𝐽 2

1 ) cos
2 𝛾 + (2𝑌 2

0 + 2𝑌 2
1 ) sin

2 𝛾 + (2𝐽0𝑌0 + 2𝐽1𝑌1) sin (2𝛾)
]

.

(82)

imilarly, the average potential energy over a wave period can be
xpressed as :

PE = 𝜌𝑔𝜋𝐴2𝛬2
1

[

𝑟2

4

1
∑

(

𝐽 2
𝑛 + 𝑌 2

𝑛
)

]𝑟2

. (83)

𝑛=0 𝑟1
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f
g
(

Fig. 4. Comparisons of transient waves obtained from analytical and asymptotic expressions at 𝑟 = 2.5 for 𝑘0𝑐 = {1.0, 2.0}.
c
a

Applying only the first term of the asymptotic expansion of Bessel
unctions 𝐽𝑛(𝑘𝑟) and 𝑌𝑛(𝑘𝑟) for large arguments (Abramowitz and Ste-
un, 1964),

𝐽𝑛
𝑌𝑛

)

(𝑘𝑟) ∼
√

2
𝜋𝑘𝑟

(

cos
sin

)

(𝑘𝑟 − 𝑛𝜋
2

− 𝜋
4
), (84)

the average kinetic and potential energy expressions are further given
by :

KE =
𝜌𝑔𝜋𝐴2

2
𝛬2
1

[

𝑟2

4

1
∑

𝑛=0

(

4
𝜋𝑘0𝑟

)

]𝑟2

𝑟1

= 𝜌𝑔𝐴2𝛬2
1
𝑟2 − 𝑟1
𝑘0

, (85a)

PE = 𝜌𝑔𝜋𝐴2𝛬2
1

[

𝑟2

4

1
∑

𝑛=0

(

2
𝜋𝑘0𝑟

)

]𝑟2

𝑟1

= 𝜌𝑔𝐴2𝛬2
1
𝑟2 − 𝑟1
𝑘0

. (85b)

It is obvious that in a wave period, the average kinetic and potential
energy are equal, and the corresponding width of the ring band 𝑟2−𝑟1 is
identically equal to a wave length. As a consequence, the total average
energy in the ring band over a wave period is :

E = KE + PE =
4𝜋𝜌𝑔𝐴2

𝑘20[𝐽
2
1 (𝑘0𝑐) + 𝑌

2
1 (𝑘0𝑐)]

. (86)

3.4. Numerical results

Transient waves generated by a periodic motion of the circular
cylinder are evaluated by both analytical and asymptotic expressions.
As discussed in the preceding derivation, the parameter 𝑠 is taken to be
zero in all computations, which guarantees the waves are concentric.
Or rather, the transient waves are independent with the circumferential
coordinate 𝜃.

Wave elevations varying with time instants at a radial position 𝑟 =
7

2.5 are depicted in Fig. 4(a) for 𝑘0𝑐 = 1.0 and Fig. 4(b) for 𝑘0𝑐 = 2.0. In t
Fig. 4, the solid lines represent results from the analytical formulation
given in (37), the dotted lines are obtained from the asymptotic expres-
sion given in (56) for a small 𝑡 representing the initial stage, while the
dot dashed lines are obtained from the asymptotic expression given in
(62) for a large 𝑡 representing the steady state. It can be seen that the
developing behaviours in the very beginning of transient waves are well
captured by the asymptotic expression for 𝑡 → 0. With time increasing,
a good agreement is achieved between analytical results and those from
the asymptotic expression for 𝑡 → ∞. The latter can be regarded as the
frequency-domain solution and can provide only the steady-state wave
information such as wave period. This is a very important reason to
derive and study the time-domain solution, analytically in special. More
characteristics on present transient concentric waves may be further
analysed and revealed as the work studied in Chen and Li (2019).

Snapshots of transient waves, in terms of wave elevations on the
free surface, varying with the radial coordinate 𝑟 are also illustrated
at four fixed time instants from 𝑡∕𝑇 = 6 in Fig. 5(a) to 𝑡∕𝑇 = 9
in Fig. 5(d). The dot dashed lines represent results from asymptotic
expressions given in (64) for both 𝑡 → ∞ and 𝑟 → ∞. As shown in
Fig. 5, a much reasonable agreement is apparently noticed between
analytical and asymptotic expressions with time increasing. The wave
height or amplitude is not a constant, and it varies with the order of
1∕

√

𝑟 asymptotically as concluded in (64).
To observe the propagation of transient concentric waves more intu-

itively, wave elevations varying with the radial coordinate at different
time instants are illustrated in Fig. 6, where lines from bottom to top
represent results from 𝑡∕𝑇 = 1 to 𝑡∕𝑇 = 20 with the wave period 𝑇 =
2𝜋∕

√

𝑔𝑘0 and wave number 𝑘0𝑐 = 1. The corresponding longitudinal
oordinates, or rather wave elevations on the free surface, are added by
constant from 0.5 for 𝑡∕𝑇 = 2 to 9.5 for 𝑡∕𝑇 = 20 with an interval 0.5

o make all lines in one figure. Wave elevations at 𝑡∕𝑇 = {5, 10, 15, 20}
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Fig. 5. Comparisons of transient waves varying with the radial distance obtained from analytical and asymptotic expressions at 𝑡∕𝑇 = {6, 7, 8, 9} for 𝑘0𝑐 = 1.
Fig. 6. Transient waves from 𝑡∕𝑇 = 1 (bottom) to 𝑡∕𝑇 = 20 (top) for 𝑘0𝑐 = 1.0.
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re depicted by the dashed lines for a clear distinction. Moreover, nu-
erical results obtained from the boundary integral equation, a newly
eveloped model based on the boundary element method marked as
LBEM to study wave-structure interactions, are also shown at 𝑡∕𝑇 = 4
nd 𝑡∕𝑇 = 9 by the triangle and circle symbols, respectively. For clarity,
hey are locally amplified and presented separately in Fig. 7, from
hich a good agreement is observed. It can be concluded that the
nalytical time-domain solution derived in this study may be provided
s a benchmark to validate the numerical model and algorithms of high
scillatory integrals associated. More details on the numerical model
LBEM may be referred to Liang and Chen (2017), Chen et al. (2018a)
nd Li et al. (2021), though important expressions and the boundary
ntegral equation have been presented in Appendix.

Wave elevations varying with time instants or the time history of
ave elevations at a fixed radial position are illustrated in Fig. 8(a)

or 𝑟 = 4 and Fig. 8(b) for 𝑟 = 8. Results from analytical solutions
nd those from FLBEM match well in both the initial stage and the
8

teady state. It is worth noting that the steady amplitude for 𝑟 = 4
oes not coincide with that of 𝑟 = 8, which is different from the case
f sinusoidal plane progressive waves whose amplitudes are equal at
ifferent positions. The steady amplitude of wave elevation on the free
urface can be approximately estimated as |𝐻 (2)

0 (𝑘𝑟)∕𝐻 (2)
1 (𝑘0𝑐)|. It can

lso be observed that there exists a maximum or a minimum in the
ave elevation before the transient waves reach to the steady state.
inally, to make the generated concentric waves more intuitive and
isual, the contour map and corresponding perspective view at 𝑡∕𝑇 = 10
nd 𝑡∕𝑇 = 15 are presented in Fig. 9 and Fig. 10, respectively.

It is of importance to keep in mind that present derivations, solu-
ions and results are based on the linear free-surface boundary condi-
ions and small amplitude water wave assumptions. In this study, the
enerated waves can be seen as short waves compared to the infinite
ater depth. For waves in deep water, the wave steepness can be used
s a measure of nonlinearity of water waves. So the ratio of the wave
mplitude to wave length shall be far less than one to ensure the
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Fig. 7. Comparisons of transient waves between analytical results and those from FLBEM for 𝑘0𝑐 = 1.0.
Fig. 8. Wave elevations varying with time instants for 𝑘0𝑐 = 1.0.
inearisation. In all the above plots and contours, the wave elevation on
he free surface has been non-dimensionalised by the largest amplitude

of the moving cylinder. It is not hard to give definite values of 𝜔 and
in (32) and (33) to guarantee the wave steepness small enough and

he linearisation.

. Concluding remarks

This paper is motivated to present details on deriving analytical
olutions of transient water waves generated by a moving circular cylin-
er. Based on the principle of pulse superposition, the total velocity
otential can be decomposed into an instantaneous term and a memory
erm, which are further solved analytically by applying the method
9

of variable separation and the theorem of Cauchy about the complex
contour integral. The analytical time-domain solutions are evaluated
and numerical results are illustrated in terms of wave elevation on the
free surface for a pulsating circular cylinder, expanding and contracting
radially. Results are further compared with those obtained from a
recently developed numerical model based on the boundary element
method in deep water and a very reasonable agreement is achieved.
Analytical solutions derived in this work are of important significance
for hydrodynamics in the time domain, at least from the point of view
that they can be used as benchmarks for validating both numerical
simulations and physical experiments. They are also helpful to generate
different forms of transient water waves on the free surface and to
further study propagating characteristics.



Ocean Engineering 266 (2022) 112783R. Li et al.
Fig. 9. Contour map of wave elevation on the free surface for 𝑘0𝑐 = 1.0.
Fig. 10. Perspective view of concentric waves for 𝑘0𝑐 = 1.0.
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Appendix. Fourier-Laguerre Boundary Element Method (FLBEM)

Applying the Green’s theorem in the fluid domain limited by the
free surface on the top, the cylinder surface  and a cylindrical control
10
surface at infinity along the radial direction, the velocity potential for
any field point 𝑝 and time 𝑡 may be given by :

4𝜋𝛷(𝑝, 𝑡) = ∬
(𝛷𝑛𝐺0 −𝛷𝐺0

𝑛)d𝑆 + ∫

𝑡

0

[

∬
(𝛷𝑛𝐺𝑓 −𝛷𝐺𝑓𝑛 )d𝑆

]

d𝜏, (A.1)

where the normal direction is defined positive pointing into the fluid
and 𝛷𝑛 = 𝜕𝛷∕𝜕𝑛. The instantaneous and memory terms of free surface
time-domain Green function are :

𝐺0 = − 1
√

𝑅2 + (𝑧 − 𝑧𝑞)2
+ 1

√

𝑅2 + (𝑧 + 𝑧𝑞)2
, (A.2a)

𝐺𝑓 = −2∫

∞

0
e𝑘(𝑧+𝑧𝑞 )𝐽0(𝑘𝑅)

√

𝑔𝑘 sin[
√

𝑔𝑘(𝑡 − 𝜏)]d𝑘, (A.2b)

where 𝑅 =
√

(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 represents the horizontal distance be-
tween field point 𝑝(𝑟, 𝜃, 𝑧) and source point 𝑞(𝑐, 𝜃𝑞 , 𝑧𝑞) with coordinates
relations (𝑥, 𝑦) = 𝑟(cos 𝜃, sin 𝜃) and (𝜉, 𝜂) = 𝑐(cos 𝜃𝑞 , sin 𝜃𝑞).

It is assumed that the velocity potential 𝛷 and corresponding nor-
mal derivative 𝛷𝑛 on the cylinder surface  are expanded by the
Fourier–Laguerre series :

𝛷 =
∞
∑

𝑚=0

∞
∑

𝑛=−∞
𝜙𝑚𝑛𝑚(−𝑧)ei𝑛𝜃 , 𝛷𝑛 =

∞
∑

𝑚=0

∞
∑

𝑛=−∞
𝜓𝑚𝑛𝑚(−𝑧)ei𝑛𝜃 , (A.3)

where 𝑚(𝑥) = e−𝑥∕2𝐿𝑚(𝑥) with 𝐿𝑚(𝑥) for 𝑥 ≥ 0 standing for the 𝑚th
order Laguerre polynomial defined in Abramowitz and Stegun (1964).
By constructing the boundary integral equation on  in the sense of
Galerkin collocation via multiplying a test function 𝑗 (−𝑧)e−i𝓁𝜃 on both
sides of (A.1) and integrating over (−∞, 0) and (−𝜋, 𝜋) with respect to
𝑧 and 𝜃, the linear system associated with expansion coefficients 𝜙𝑚𝑛
and 𝜓𝑚𝑛 is obtained as follows :

𝜙𝑗𝓁 =
∞
∑

∞
∑

𝜓𝑚𝑛(𝑡)̂0𝑚𝑛,𝑗𝓁 − 𝜙𝑚𝑛(𝑡)̂0
𝑚𝑛,𝑗𝓁
𝑚=0 𝑛=−∞
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∫

o

𝜂

+ (𝜓𝑚𝑛 ∗ ̂𝑓𝑚𝑛,𝑗𝓁)(𝑡) − (𝜙𝑚𝑛 ∗ ̂𝑓
𝑚𝑛,𝑗𝓁)(𝑡), (A.4)

with notations defined by :

{̂0𝑚𝑛,𝑗𝓁 , ̂
0
𝑚𝑛,𝑗𝓁 , ̂

𝑓
𝑚𝑛,𝑗𝓁 , ̂

𝑓
𝑚𝑛,𝑗𝓁} = 1

4𝜋
× =

0

−∞ ∫

𝜋

−𝜋

[

∬
𝑚(−𝑧𝑞)ei𝑛𝜃𝑞 {𝐺0, 𝐺0

𝑛 , 𝐺
𝑓 , 𝐺𝑓𝑛 }d𝑆

]

𝑗 (−𝑧)e−i𝓁𝜃d𝜃d𝑧, (A.5)

and (𝜓𝑚𝑛 ∗ 𝑓𝑚𝑛,𝑗𝓁)(𝑡) represents the convolution of 𝜓𝑚𝑛 and 𝑓𝑚𝑛,𝑗𝓁 , given
by :

(𝜓𝑚𝑛 ∗ 𝑓𝑚𝑛,𝑗𝓁)(𝑡) = ∫

𝑡

0
𝜓𝑚𝑛(𝜏)

𝑓
𝑚𝑛,𝑗𝓁(𝑡 − 𝜏)d𝜏, (A.6)

and so does the notation of (𝜙𝑚𝑛 ∗ 𝑓
𝑚𝑛,𝑗𝓁)(𝑡). It is clear that once

𝜓𝑚𝑛 is given, 𝜙𝑚𝑛 can be solved from the linear system (A.4), and vice
versa. The expansion coefficients 𝜓𝑚𝑛 in (A.3) may be obtained from
the corresponding inverse transformation. By using the body boundary
condition 𝛷𝑛 = 𝑉 (𝑡), we have :

𝜓𝑚𝑛(𝑡) =
1
2𝜋 ∫

0

−∞ ∫

𝜋

−𝜋
𝑉 (𝑡)𝑚(−𝑧)e−i𝑛𝜃d𝜃d𝑧. (A.7)

The whole fluid domain is therefore solved and the wave elevation
n the free surface may be deduced from (A.1),

= −1
𝑔
𝜕
𝜕𝑡

[ ∞
∑

𝑚=0

∞
∑

𝑛=−∞
[(𝜓𝑚𝑛 ∗ 𝑓𝑚𝑛)(𝑡) − (𝜙𝑚𝑛 ∗ 𝑓

𝑚𝑛)(𝑡)]

]

𝑧=0

, (A.8)

with notations defined by :

(𝜓𝑚𝑛 ∗ 𝑓𝑚𝑛)(𝑡) = ∫

𝑡

0
𝜓𝑚𝑛(𝜏)𝑓𝑚𝑛(𝑡 − 𝜏)d𝜏, (A.9a)

𝑓𝑚𝑛 =
1
4𝜋 ∬

𝑚(−𝑧𝑞)ei𝑛𝜃𝑞𝐺𝑓 d𝑆, (A.9b)

and so do the notations of (𝜙𝑚𝑛 ∗ 𝑓
𝑚𝑛)(𝑡) and 𝑓

𝑚𝑛.
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