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Abstract
Due to the advantages of easy implementation and high efficiency, surrogate models have been widely used in designing 
complex engineering systems. In general, a stand-alone surrogate model cannot perform well for all engineering design 
problems, and the performance of a surrogate model is not known in advance. Ensembles of surrogates that combine vari-
ous stand-alone surrogates have been developed to improve the robustness of stand-alone surrogate models. Inspired by 
the previous research on using the heuristic formulation to calculate weights of stand-alone surrogate models, we propose 
a pointwise ensemble of surrogates with adaptive function and heuristic formulation (PEAH) in this paper. The adaptive 
function presented in this paper contains the local accuracy and prediction uncertainty information around a prediction point. 
Thus, the adaptive function can adapt to the local characteristics of the prediction point. Various analytical test functions 
and two engineering design problems have been selected to test PEAH, and existing well-known ensembles of surrogates 
are employed to compare with the proposed pointwise ensemble model. The test results indicate that PEAH performs better 
in those problems with a better balance between accuracy and robustness.

1 Introduction

The application of high-fidelity numerical simulations, 
including computational fluid dynamics (CFD) and finite 
element analysis (FEA), in the design of complex engineer-
ing systems leads to extensive computation. When high-
fidelity simulation techniques are integrated into the design 
optimization of complex engineering systems, the resulting 
computational cost is expensive (Jin et al. 2001). Hence, sur-
rogate models are widely used in place of costly high-fidelity 
computer simulations.

Surrogate models approximate the relationship between 
the system response and input variables using interpolation 
fitting methods or regression methods at a set of training 
points. Many stand-alone surrogate models have been devel-
oped, including Radial Basis Function (RBF) (Hardy 1971), 
Polynomial Response Surface (PRS) (Box et al. 1978) , 
Kriging (Sacks et al. 1989), Multivariate Adaptive Regres-
sion Splines (MARS) (Friedman 1991), Artificial Neural 
Network (ANN), (Hassoun et al. 1995), Gaussian Process 
(GP) (MacKay 1998) and Support Vector Regression (SVR) 
(Cristianini et al. 2000). Many researchers have focused on 
comparing the performance of various stand-alone surrogate 
models (Carpenter and Barthelemy 1993; Giunta and Wat-
son 1998; Simpson et al. 1998; Clarke et al. 2004; Krishna-
murthy 2005; Yang et al. 2005).

In general, one surrogate model cannot perform well for 
all engineering design problems (Forrester and Keane 2009). 
For a given design problem, the performance of a surrogate 
model is not known in advance, so it is challenging to select 
an appropriate surrogate model for a given problem. In addi-
tion, for the same design problem, the performance of the 
surrogate model may vary from one design of experiments 
(DOE) to another DOE (Viana et al. 2009).

Over the past few decades, ensembles of surrogates that 
combine various surrogate models have been investigated by 
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researchers to improve the accuracy and robustness of the 
prediction (Goel et al. 2007; Acar and Rais-Rohani 2009; 
Viana et al. 2009; Acar 2010; Lee and Choi 2014; Liu et al. 
2016). Each surrogate is assigned a weight factor, which 
reflects the importance of the surrogate in the ensemble. 
The larger the weight, the more important the corresponding 
surrogate model is in the ensemble. According to the error 
measures used to determine weight factors, existing ensem-
bles of surrogates can be generally classified as the average 
ensemble and the pointwise ensemble.

Using global error measures, the weight factors of the 
average ensemble keep constant over the entire design space. 
Many researchers employed the generalized mean square 
cross-validation error (GMSE) as the global error measure 
to calculate the weight factors. Goel et al. (2007) proposed a 
heuristic formulation to evaluate the weight factors based on 
GMSE . Acar and Rais-Rohani (2009) converted the selec-
tion of weight factors to an optimization problem, and the 
objective was to minimize GMSE. Viana et al. (2009) cal-
culated weight factors using an approach based on the opti-
mization problem with the aim to reduce the mean square 
error (MSE). Zhou et al. (2011) proposed a new approach 
to calculate weight factors using a recursive process. Liu 
et al. (2017) employed an evolutionary multi-agent system 
to construct the ensemble of surrogates, and the GMSE was 
adopted as the global error metric. Yin et al. (2018) pro-
posed a new ensemble of surrogates. The design space was 
divided into multiple regions. One set of weight factors was 
obtained by minimizing the GMSE on the training points in 
each area.

Based on local error measures, weight factors of the point-
wise ensemble change with the prediction point. As an alter-
native to using a global error measure, Sanchez et al. (2008) 
adopted the prediction variance as the local error measure to 
evaluate weight factors of the ensemble of surrogates, and the 
prediction variance for each surrogate model in the ensemble 
was assessed using the k nearest neighbors of the prediction 
point x . Acar (2010) proposed an ensemble of surrogates, in 
which the pointwise cross-validation error is employed as the 
local error metric. Zhang et al. (2012) presented an adaptive 
hybrid surrogate model, and the weight factors were deter-
mined based on a local measure of accuracy. Lee and Choi 
(2014) developed a new ensemble of surrogates using the v 
nearest points cross-validation error (vCV) rather than the 
GMSE. Liu et al. (2016) proposed an optimal weighted point-
wise ensemble that combined the locally accurate predictions 
of radial basis function models constructed by different basis 
functions. Chen et al. (2018) developed an ensemble of sur-
rogates with local and global measures. Song et al. (2018) 
employed the Gaussian process estimated prediction error 
as the local error metric to determine weight factors of the 
ensemble of surrogates. Ye et al. (2020) developed an opti-
mal weighted pointwise ensemble. The weight factors were 

selected based on minimizing the local mean square error 
constructed with the global-local error (GLE). Zhang et al. 
(2021) proposed a unified ensemble of surrogates using the 
combination of global and local error metrics.

Due to constant weights over the design space, the average 
ensemble of surrogates cannot adapt to the local characteris-
tics of the prediction point. Thus, the performance of average 
ensemble models is limited. In contrast, the pointwise ensem-
ble of surrogates employs local error measures to evaluate the 
weights of stand-alone surrogates. The weight factor of each 
surrogate changes with the prediction point. Compared with 
the average ensemble, the pointwise ensemble did not show 
obvious advantages because there is no accurate local error 
metric (Ye et al. 2020). Therefore, the local error measure that 
can accurately adapt to the local features around the prediction 
point is the key to the pointwise ensemble of surrogates.

Inspired by the heuristic formulation proposed by Goel 
et al. (2007), a pointwise ensemble with adaptive function 
and heuristic formulation (PEAH) is proposed in this work. 
The adaptive function combines the pointwise cross-validation 
error and the distance information between the training set and 
the prediction point. In addition, the uncertainty information 
of local accuracy for all stand-alone surrogates at the predic-
tion point is also included in the adaptive function. Therefore, 
the adaptive function can adapt to the local characteristics of 
a prediction point.

In the following of this paper, existing well-known ensem-
bles of surrogates are reviewed in Sect. 2. And the proposed 
pointwise ensemble of surrogates is presented in Sect. 3. Sec-
tion 4 gives the comparison results on numerical examples. 
Finally, concluding remarks are given in Sect. 5.

2  Existing ensembles of surrogates

Conventional multiple surrogate technique assesses the per-
formance of various stand-alone surrogate models and selects 
the best surrogate model (Glaz et al. 2009). This conventional 
approach has two disadvantages. Firstly, most of the time spent 
on building stand-alone surrogate models is wasted. Secondly, 
for the same problem, the performance of various surrogate 
models depends on the selection of the training points, the 
chosen surrogate model may not perform the best when the 
training set changes (Acar 2010). Those two problems can 
be solved by constructing a weighted ensemble of surrogates.

2.1  Weighted average ensemble model

Using a weighted average of various surrogate models, an 
ensemble of surrogates can be constructed. The built ensem-
ble can be formulated as:
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where M refers to the number of stand-alone surrogate mod-
els in the ensemble, ŷi represents the predicted value of the 
ith surrogate model at the prediction point x, and ŷE refers 
to the predicted value of the ensemble of surrogates at the 
prediction point. wi indicates the weight factor of the ith 
surrogate model. The sum of weight factors in the ensemble 
equals to 1, so when all surrogates have the same predicted 
value at the point x, the ensemble of surrogates also keeps 
the same prediction.

2.2  Average ensemble model proposed by Goel 
et al. (2007)

Using the global error metric, the weight factors of aver-
age ensemble keep constant over the entire design space. 
Goel et al. (2007) proposed a prediction sum of squares 
(PRESS) based weighting model (PBW) using the follow-
ing heuristic formulation.

where Ei indicates the 
√
PRESS (also known as 

√
GMSE)  

of the ith surrogate model at the training set. � and � are 
two parameters used to control the importance of averag-
ing and the importance of each surrogate in the ensemble, 
respectively. N refers to the number of training points in 
the training set. y(k) represents the actual response at the kth 
training point, and ŷi(k) represents the predicted value at the 
kth training point from the ith surrogate model constructed 
with all the training points except the kth one. The average 
ensemble model proposed by Goel et al. (2007) is denoted 
as PBW.

(1)ŷE(x) =

M∑
i=1

wiŷi(x)

(2)
M∑
i=1

wi =1

(3)wi =
w∗
i∑M

j=1
w∗
j

(4)w∗
i
=(Ei + 𝛼Ē)𝛽 𝛼 < 1, 𝛽 < 0

(5)Ei =

���� 1

N

N�
k=1

(y(k) − ŷi(k))
2 =

√
PRESS

(6)Ē =
1

M

M∑
i=1

Ei

2.3  Average ensemble model proposed by Acar 
and Rais‑Rohani (2009)

Acar and Rais-Rohani (2009) converted the selection of 
weight factors to an optimization problem, and the objec-
tive was to minimize the GMSE of the proposed ensemble 
model. The optimization problem is formulated as:

where ŷE(k) represents the predicted value at the kth training 
point from the ensemble of surrogates constructed with all 
except the kth training point. The average ensemble model 
proposed by Acar and Rais-Rohani (2009) is denoted as EP 
in this paper.

2.4  Average ensemble model proposed by Viana 
et al. (2009)

Inspired by Bishop’s approach to calculate the mean 
square error (MSE) (Bishop et  al. 1995), Viana et  al. 
(2009) calculated weight factors using an approach based 
on the optimization problem with the objective to mini-
mize MSE:

where eE(x) represents the prediction error of the ensemble 
of surrogates. C refers to the covariance matrix in Bishop’s 
formulation.

cij represents the element of C, Viana et al. (2009) approxi-
mated C by the following equation:

where N represents the number of training points and 
ei = [ei(x1), ei(x2), ..., ei(xN)]

T is the pointwise cross-valida-
tion error vector of the ith surrogate model at the training 
set. Therefore, the optimization problem proposed by Viana 
et al. (2009) can be formulated as:

(7)

Min GMSE(ŷE(wi)) =
1

N

N∑
k=1

(y(k) − ŷE(k))
2

w.r.t wi

s.t
M∑
i=1

wi = 1

(8)MSEE =
1

V ∫V

e2
E
(x)dx = wTCw

(9)eE(x) =y(x) − ŷE(x)

(10)cij =
1

V ∫V

ei(x)ej(x)dx

(11)cij ≃
1

N
eT
i
ej
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The optimal results can be obtained using Lagrange 
multipliers:

The weight factors in the above equation may be larger than 
one or less than zero, Viana et al. (2009) enforced the weight 
factors positive by solving Eq.(13) using only the diagonal 
elements of C. Then the weights of the ensemble of surro-
gates can be obtained using Eq.(13). For convenience, the 
average ensemble model proposed by Viana et al. (2009) is 
denoted by OWSd in this paper.

2.5  Pointwise ensemble model proposed by Acar 
(2010)

Acar (2010) proposed an ensemble of surrogates, in which 
the pointwise cross-validation error was adopted as the local 
error metric. The weight factors are calculated by the fol-
lowing equations:

where dj(x) represents the Euclidean distance between the 
prediction point x and the training point xj . Wji is equal to 
one for the ith surrogate model with the smallest cross-vali-
dation error at the jth training point and equal to zero for all 
other surrogate models at the jth training point. The point-
wise ensemble model proposed by Acar (2010) is denoted 
by SP1 in this paper.

2.6  Pointwise ensemble model proposed by Lee 
and Choi (2014)

Lee and Choi (2014) developed a new ensemble of surro-
gates, in which the v nearest pointwise cross-validation error 

(12)

Min wTCw

w.r.t wi

s.t
M∑
i=1

wi = 1

(13)w =
C−1

�

�TC−1�

(14)wi(x) =
W∗

i
(x)

∑M

j=1
W∗

j
(x)

(15)W∗
i
(x) =

N∑
j=1

WjiIj(x)

(16)Ij(x) =
1

d2
j
(x)

(17)dj(x) =
‖‖‖x − xj

‖‖‖

(vCV) was employed as the local error metric. The weight 
factors are evaluated by the following equations:

where D1(x) represents the distance between the prediction 
point x and the closest training point to x, and D2(x) indicates 
the distance between the prediction point x and the second 
closest training point to x. The pointwise ensemble model 
proposed by Lee and Choi (2014) is denoted by PEM-vCV.

2.7  Pointwise ensemble model proposed by Liu 
et al. (2016)

Liu et al. (2016) proposed a pointwise ensemble of sur-
rogates, in which the weight functions are calculated as 
follows:

where W̄ij refers to the observed weights of the jth sur-
rogate at the ith training point, the 0-1 strategy is used to 
determine W̄ij . di indicates the Euclidean distance between 
the ith training point and the prediction point. And 
Bi = (1∕GMSEu)∕maxk=1,2,...,M(1∕GMSEk) is the normal-
ized global accuracy of the uth surrogate model that has 
an observed weight with a value of 1 at the ith training 
point. � represents a constant attenuation coefficient, which 
is obtained by minimizing the 

√
GMSE of the ensemble of 

surrogates as:

(18)wi(x) =

1

vCV∗
i
(x)

∑M

j=1

1

vCV∗
j
(x)

(19)vCV∗
i
(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝛼(x) ⋅
�

1

v

∑v

k=1
(yi(x) − ŷi(k)(x))

2

for interpolation models�
1

v

v∑
k=1

(yi(x) − ŷi(k)(x))
2

for regression models

(20)�(x) =3(
D1(x)

D2(x)
)2 − 2(

D1(x)

D2(x)
)3

(21)wj(x) =

⎧⎪⎨⎪⎩

if x ≠ xi ∶
∑N

i=1

d
−Bi𝜃

i
W̄ij∑

d
−Bi𝜃

i

if x = xi ∶ W̄ij

(22)Min
√
GMSEe =

�
1

N

N∑
i=1

(y(xi) − ỹ
(−i)
e (xi, 𝜃))

2

w.r.t 𝜃
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where ỹ(−i)
e

(xi, 𝜃) represents the predicted value at xi obtained 
by the ensemble model constructed with all the training 
points except the ith one. w(−i)

j
(xi, �) represents the predicted 

weight of the jth surrogate model at xi , it can be obtained by 
deleting the ith row of the observed weights matrix W̄  . The 
pointwise ensemble model proposed by Liu et al. (2016) is 
denoted by OWPE.

3  Proposed pointwise ensemble 
of surrogates

Generally, the pointwise ensemble can be more accurate than 
the average ensemble as the former can adapt to local features 
of the prediction point. The local error measure which can 
accurately adapt to the local characteristics around the predic-
tion point is the key to the pointwise ensemble of surrogates. 
This paper proposed a pointwise ensemble of surrogates with 
adaptive function and heuristic formulation (PEAH).

3.1  Weight function of the PEAH model

The adaptive function presented in this paper can adapt to the 
local characteristics around the prediction point. In the pro-
posed PEAH, the weight function is calculated as follows:

where Ei indicates the 
√
PRESS of the ith surrogate model 

at the training set and adapti(x) represents the adaptive func-
tion of the ith surrogate model at the prediction point x, the 
adaptive function is formulated as:

where gi(x) represents the local feature function of the ith 
surrogate model at the prediction point x, calculated as:

where d(x) = [d(x, x1), d(x, x2), ..., d(x, xN)]
T represents the 

distance vector, d(x, xN) refers to the Euclidean distance 

(23)ỹ(−i)
e

(xi, 𝜃) =
∑M

j=1
w
(−i)

j
(xi, 𝜃)ỹ

(−i)

j
(xi)

(24)wi(x) =
w∗
i
(x)

∑M

j=1
w∗
j
(x)

(25)w∗
i
(x) =(Ei(x) + 𝛼Ē(x))𝛽 𝛼 < 1, 𝛽 < 0

(26)Ei(x) =Ei ⋅ adapti(x)

(27)Ē(x) =
1

M

M∑
i=1

Ei(x)

(28)adapti(x) = gi(x)
[1+e(−1∕u(x))]

(29)gi(x) = d(x)T ⋅ aci

between the prediction point and the Nth training point. 
aci = [ēi(x1), ēi(x2), ..., ēi(xN)]

T is the normalized pointwise 
cross-validation error vector of the ith surrogate at the train-
ing set, and ēi(xN) is determined by:

From the above equations, we can observe that the local 
feature function gi(x) combines the normalized pointwise 
cross-validation vector aci and the distance information 
between the training point set and the prediction point x, 
thus gi(x) can reflect the local accuracy of the ith surrogate. 
The smaller value of the gi(x) , the higher local accuracy of 
the ith surrogate model. And u(x) represents the uncertainty 
of local accuracy for all the surrogates at the prediction point 
x, calculated as:

A large value of u(x) indicates a region near the prediction 
point x with high uncertainty of local accuracy. Combin-
ing the local feature function gi(x) and the uncertainty of 
local accuracy at the prediction point, the adaptive function 
adapti(x) can reflect the local characteristics of the predic-
tion point x. The larger the value of the adapti(x) function, 
the larger the corresponding local error. Therefore, the value 
of Ei(x) will increase with the increase of adapti(x) , and the 
weight of the ith stand-alone surrogate model w∗

i
(x) will be 

smaller (Since 𝛽 < 0 ). The proposed PEAH model involves 
the effective properties of the PBW model. And the weights 
of the PEAH model change with the prediction point, which 
can reflect local features of the region near the prediction 
point.

In order to better explain the characteristics of the 
adaptive function, we use an example that includes one-
dimensional input space and two local feature functions 
gi(x)(i = 1, 2) to illustrate the trends of the adaptive function. 
We set a training point xtr at the origin in the one-dimen-
sional input space, and two stand-alone surrogate models are 
used to construct the ensemble. The cross-validation error 
of the first stand-alone surrogate model at the xtr ( e1(xtr) ) 
is assumed to be 1. To illustrate the influence of the uncer-
tainty of local accuracy u in the adaptive function, the cross-
validation error of the second stand-alone surrogate model 
at the xtr ( e2(xtr) ) is assumed to be 2, 4 and 6, respectively. 
Then the distance vector in the one-dimensional input space 
is d(x)T = |x| . In the case of three different e2(xtr) values, 

(30)ēi(xN) =
��ei(xN)��∑M

k=1
��ek(xN)��

(31)u(x) =

�∑M

i=1
(gi(x) − ḡ(x))2

M − 1

(32)ḡ(x) =

∑M

i=1
gi(x)

M
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the first stand-alone surrogate’s ac1 value is 1
3
 , 1
5
 , and 1

7
 , 

respectively. The corresponding ac2 value of the second 
stand-alone surrogate is 2

3
 , 4
5
 , and 6

7
 , respectively. Using Eqs.

(28-32), we can obtain the adaptive functions of the two 
stand-alone surrogate models:

We set the value range of x to (0,2) to show the trends of the 
adaptive function. In the case of three different e2(xtr) values, 
we plotted the function curves of adapt1(x) and adapt2(x) . 
The results are shown in Fig. 1.

As shown in Fig. 1, the solid red line adapt2(x)(1) , the 
solid black line adapt2(x)(2) , and the solid green line 
adapt2(x)

(3) are the function curves of the adapt2(x) when 
e2(xtr) is 2, 4, and 6, respectively. The dashed red line 
adapt1(x)

(1) , the dashed black line adapt1(x)(2) , and the 
dashed green line adapt1(x)(3) are the function curves of the 
adapt1(x) when e2(xtr) is 2, 4, and 6, respectively. When the 
value of x increases, it indicates that the distance between the 
prediction point and the training point gradually increases, 
and the values of all the adaptive functions increase. With 
the increase of e2(xtr) , the value of adapt2(x) increases (See 
solid lines in Fig. 1), this shows that an increase in the local 
error value leads to an increase in the value of adapt(x). 
In addition, when the error value e2(xtr) increases and the 
e1(xtr) remains the same, it means that the uncertainty of 
local accuracy u increases. Then from Fig. 1 we can observe 

(33)adapt1(x) =(ac1�x�)[1+e
−(

√
2

�ac1−ac2��x� )]

(34)adapt2(x) =(ac2�x�)[1+e
−(

√
2

�ac1−ac2��x� )]

that with the increase of the e2(xtr) , the difference between 
the value of adapt1(x) and the value of adapt2(x) gradually 
increases. This is because when the uncertainty of local 
accuracy increases, the stand-alone surrogate model with 
higher local accuracy is given more importance in the pro-
posed PEAH ensemble model.

3.2  Selection of parameters ̨  and ˇ

Parameters � and � are employed to control the importance 
of averaging and the importance of each surrogate in the 
ensemble, respectively (Goel et al. 2007). In the proposed 
PEAH, � and � are obtained by minimizing the GMSE value 
on the training set. The optimization problem is formulated 
as:

where ŷP(i) represents the response at the ith training point 
predicted by the PBW model constructed with all train-
ing points except the ith one. The parameter � controls the 
importance of averaging. It is a positive parameter, and the 
upper bound of the � is 1 (presented by (Goel et al. 2007)), 
so the lower limit and upper limit of � are 0 and 1, respec-
tively. As for � , it is a negative parameter. The sensitivity 
analysis of the � in (Goel et al. 2007) indicates that if the 
value of � is too small, the accuracy of the ensemble may 
be reduced, and the recommended value of � is -1, so the 
interval (-2, 0) of � is selected as the bound for � . ŷP(i) is 
calculated as:

where ŷj(xi) represents the predicted value at the ith training 
point xi from the jth surrogate constructed with all training 
points except xi.

3.3  Flowchart of the proposed PEAH model

The flowchart of the proposed PEAH model is shown in 
Fig. 2.

In general, the construction of the PEAH model consists 
of five steps:

Step 1:  Generate the training set and the prediction points.
Step 2:  Construct each stand-alone surrogate model using 

the training set.
Step 3:  Optimize the parameters � and � using Eq.(35)
Step 4:  Construct the PEAH model using Eqs.(24–32)

(35)Min GMSEP =
1

N

N∑
i=1

(y(i) − ŷP(i))
2

w.r.t 0 < 𝛼 < 1,−2 < 𝛽 < 0

(36)ŷP(i) =

M∑
j=1

wjŷj(xi)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

0

0.5

1

1.5

2

2.5

ad
ap

t i(
x)

(i)

adapt1(x)
(1)

adapt2(x)
(1)

adapt1(x)
(2)

adapt2(x)
(2)

adapt1(x)
(3)

adapt2(x)
(3)

Fig. 1  The trends of the adaptive functions



A pointwise ensemble of surrogates with adaptive function and heuristic formulation  

1 3

Page 7 of 23 113

Step 5:  Test the PEAH model using the prediction points 
and output the predicted values.

4  Experiments and analysis

Six well-known ensembles of surrogates introduced in 
Sect. 2, including PBW, EP, OWSd, SP1, PEM-vCV and 
OWPE, are employed to compare with the proposed PEAH. 
PBW, EP and OWSd belong to average ensemble models. 
SP1, PEM-vCV and OWPE are pointwise ensemble mod-
els. Section 4.1 presents the introduction of the parameter 
setting and test examples (including twenty analytical test 
functions and two engineering design problems), the CFD 
modeling process of the shape design problem is introduced 
in Sect. 4.2. The introduction of the I-beam design prob-
lem is given in Sect. 4.3. The performance metrics used to 
evaluate the prediction accuracy of surrogate models are 
given in Sect. 4.4. Section 4.5 shows the simulation results 

of various surrogate models on the analytical test functions. 
The simulation results of different surrogate models on the 
shape design problem of the underwater robot are shown in 
Sect. 4.6, and the comparison results of surrogate models on 
the I-beam design problem are presented in Sect. 4.7. The 
comparison of computational costs of various ensembles of 
surrogates is given in Sect. 4.8.

4.1  Parameter setting and test examples

For fair comparison, the parameters used in those ensembles 
of surrogates are selected in accordance with the original 
references. Three typical stand-alone surrogate models, 
including RBF, Kriging and PRS, are used to construct the 
above ensembles of surrogates. These stand-alone surrogates 
include interpolation models and regression models. The 
RBF surrogate model is based on the multiquadric basis 
function with the constant c = 1 . A Gaussian correlation 
function and a zero-order polynomial model are used in 
the Kriging surrogate model. A fully quadratic polynomial 
model is used to represent the PRS surrogate model. The 
parameter settings of the three stand-alone surrogate models 
are the same in all the ensembles of surrogates.

In order to fully verify the effectiveness of the proposed 
PEAH in this paper, we utilize twenty analytical functions 
that are widely applied for optimization from the literature 
(Acar 2010; Surjanovic and Bingham 2013; Lee and Choi 
2014). Both low-dimensional and high-dimensional prob-
lems are included in these test functions. The mathemati-
cal formulations of these analytical functions are listed in 
Table 1. Parameters in these test functions are listed in 
Table 2.

As for the design of experiments, the Latin hypercube 
sampling technique is adopted. The routine lhsdesign set 
with maximin criterion with 20 iterations in MATLAB is 
utilized to generate a set of training points for each test func-
tion. In order to eliminate the influence of random sampling, 
1000 different training sets are generated for comparison. 
1000 prediction points are generated by the random sam-
pling to test surrogate models constructed with the training 
set. The three ensembles of surrogates, including PEAH, 
OWPE and EP, are based on optimization problems. The 
fmicon function in MATLAB are utilized and sequential 
quadratic programming (SQP) is adopted as the optimizer 
for the above three ensembles of surrogates. The simulation 
process is performed on the computer with a AMD 16-Core 
processor clocking at 2.40 GHz, and the RAM of the desktop 
computer is 1 TB.

In addition to these analytical test functions, the CFD-
based shape design problem of an underwater robot from 
the literature (Chen et  al. 2021) and an I-beam design 
problem with the explicit function (Chen et al. 2019) are 

Generate the training set and the 

prediction points 

Output the predicted values 

Construct each individual 

surrogate model

Optimize parameters 

Test the PEAH model using the 

prediction points

Construct the PEAH model using 

Eqs.(24-32)

Fig. 2  Flowchart of the proposed PEAH model
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Table 1  Analytical test functions

ID Function Name Mathematical formulation Range

F1 Bukin N.6
f (x) = 100

√|||x2 − 0.01x2
1

||| + 0.01||x1 + 10|| x1 ∈ [−15,−5],

x2 ∈ [−3, 3]

F2 Branin-Hoo f (x) = (x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6)2 + 10(1 −

1

8�
) cos(x1) + 10 x1 ∈ [−5, 10],

x2 ∈ [0, 15]

F3 Cross-in-Tray
f (x) = −0.0001(

�����
sin(x1) sin(x2) exp(

�����
100 −

√
x2
1
+x2

2

�

�����
)
�����
+ 1)0.1

x1 ∈ [−10, 10],

x2 ∈ [−10, 10]

F4 De Jong N.5
f (x) = (0.002 +

25∑
i=1

1

i+(x1−a1i)
6+(x2−a2i)

6 )
−1

where 
a =

(
−32 − 16 0 16 32 − 32 ... 0 16 32

−32 − 32 − 32 − 32 − 32 − 16 ... 32 32 32

)
x1 ∈ [−65.536, 65.536],

x2 ∈ [−65.536, 65.536]

F5 Drop-Wave
f (x) = −

1+cos(12
√

x2
1
+x2

2
)

0.5(x2
1
+x2

2
)+2

x1 ∈ [−5.12, 5.12],

x2 ∈ [−5.12, 5.12]

F6 Holder Table
f (x) = −

�����
sin(x1) cos(x2) exp(

�����
1 −

√
x2
1
+x2

2

�

�����
)
�����

x1 ∈ [−10, 10],

x2 ∈ [−10, 10]

F7 Levy N.13 f (x) = sin
2(3�x1) + (x1 − 1)2[1 + sin

2(3�x2)] + (x2 − 1)2[1 + sin
2(2�x2)] x1 ∈ [−10, 10],

x2 ∈ [−10, 10]

F8 Shubert
f (x) = (

5∑
i=1

i cos((i + 1)x1 + i))(
5∑
i=1

i cos((i + 1)x2 + i))
x1 ∈ [−10, 10],

x2 ∈ [−10, 10]

F9 Six-Hump Camel
f (x) = (4 − 2.1x2

1
+

x4
1

3
)x2

1
+ x1x2 + (−4 + 4x2

2
)x2

2

x1 ∈ [−3, 3],

x2 ∈ [−2, 2]

F10 Hartmann 4-D
f (x) =

1

0.839
[1.1 −

4∑
i=1

�i exp(−
4∑
j=1

Aij(xj − Pij)
2)]

xj ∈ [0, 1],

j = 1, 2, ..., 4

F11 Shekel
f (x) = −

p∑
i=1

(
4∑
j=1

(xj − Cji)
2 + �i)

−1 xj ∈ [0, 10],

j = 1, 2, ..., 4

F12 Hartmann 6-D
f (x) = −

4∑
i=1

�i exp(−
6∑
j=1

Aij(xj − Pij)
2)

xj ∈ [0, 1],

j = 1, 2, ..., 6

F13 Langermann
f (x) =

q∑
i=1

ci exp(−
1

�

6∑
j=1

(xj − Bij)
2) cos (�

6∑
j=1

(xj − Bij)

2

)
xj ∈ [0, 10],

j = 1, 2, ..., 6

F14 Levy
f (x) = sin

2(�w1) +
5∑
j=1

(wj − 1)2[1 + 10sin
2(�wj + 1)] + (w6 − 1)2[1 + sin

2(2�w6)]

where wj = 1 +
xj−1

4

xj ∈ [−10, 10],

j = 1, 2, ..., 6

F15 Rastrigin
f (x) = 60 +

6∑
j=1

[x2
j
− 10 cos(2�xj)]

xj ∈ [−5.12, 5.12],

j = 1, 2, ..., 6

F16 Styblinski-Tang
f (x) =

1

2

6∑
j=1

(x4
j
− 16x2

j
+ 5xj)

xj ∈ [−5, 5],

j = 1, 2, ..., 6

F17 Extended Rosenbrock
f (x) =

8∑
j=1

[100(xj+1 − x2
j
)
2
+ (xj − 1)2]

xj ∈ [−5, 10],

j = 1, 2, ..., 9

F18 Dixon-Price
f (x) = (x1 − 1)2 +

12∑
j=2

j(2x2
j
− xj−1)

2 xj ∈ [−5, 10]

j = 1, 2, ..., 12

F19 Power Sum
f (x) =

12∑
i=1

[(
12∑
j=1

xi
j
) − bi]

2 xj ∈ [0, 12],

j = 1, 2, ..., 12

F20 Sum of Different Power
f (x) =

12∑
j=1

���xj
���
j+1 xj ∈ [−1, 1],

j = 1, 2, ..., 12
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employed to compare the performance of various ensembles 
of surrogates.

4.2  CFD modeling of the shape design problem

The shape has an important influence on the hydrodynamic 
performance of the underwater robot; it is necessary for the 
engineer to design a shape of the underwater robot with the 
least fluid resistance. In this engineering example, various 
surrogate models are constructed to estimate the fluid resist-
ance of the underwater robot. The shape of the underwater 
robot shown in Fig. 3 is determined by 5 input variables, 
including the fore-body shape parameters qf1 and qf2, the 
after-body shape parameters qa1 and qa2, and the length of 
parallel middle body Lp. The design variables of this engi-
neering problem is listed in Table 3.

The numerical process to obtain the fluid resistance of 
the underwater robot is shown in Fig. 4, which consists of 
three steps:

Step 1: UG 10.0 is employed to import the input variables 
and generate the geometric model, and the Parasolid file of 
the geometric model is then exported to the ICEM 20.0 for 
meshing.

Step 2: In this step, ICEM 20.0 is used to generate meshes 
for the flow field. The computational domain shown in Fig. 5 
consists of a semi-sphere and a cylinder. The geometric 
model of the underwater robot is set as the wall. The bottom 
of the cylinder defines the pressure outlet (with reference 
pressure 0). The hemispherical surface and the side of the 
cylinder are selected as the Velocity-inlet (with 5m/s in the 
x-axis direction). The radius of the hemisphere is the same 
as the length of the WALL, and the length of the cylinder is 

Table 2  Parameters used in some test functions

Hartmann 4-D & Hartmann 6-D functions Shekel function Langermann function Power Sum function

� =
(
1.0, 1.2, 3.0, 3.2

)T p = 10 q = 5

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8

18

44

114

...

8

18

44

114

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

A =

⎛⎜⎜⎜⎝

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

⎞⎟⎟⎟⎠

� =
1

10

(
1, 2, 2, 4, 4, 6, 3, 7, 5, 5

)T c =
(
1, 2, 5, 2, 3

)

P = 10−4

⎛⎜⎜⎜⎝

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

⎞⎟⎟⎟⎠
C =

⎛⎜⎜⎜⎝

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3.6

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 3 1 2 3.6

⎞⎟⎟⎟⎠
B =

⎛
⎜⎜⎜⎜⎝

3 5

5 2

2 1

1 4

7 9

⎞⎟⎟⎟⎟⎠

Table 3  Design variables of the 
shape design problem

Design variable Range

x1 (qf1) [2, 4]
x2 (qf2) [0, 4]
x3 (qa1) [2, 4]
x4 (qa2) [10, 20]
x5 (Lp(cm)) [24, 30]

1 2
,qf qf

1 2
,qa qa

pL

Fig. 3  The shape of the underwater robot

Fig. 4  The CFD numerical modeling process of the shape design 
problem
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three times the length of the WALL. Structured meshes are 
utilized to generate nodes and elements.

Step 3: Then Fluent 20.0 is adopted as the CFD solver. 
RANS equations are employed as the control equations for 
the CFD simulation, and control equations are discretized 
by the finite volume method (FVM). As for the turbulence 
model, we choose the Standard k − � model, and the stand-
ard wall function is used to handle the area close to the wall. 
The wall in the flow field is defined as a no-slip wall. The 
SIMPLEC algorithm is employed as the solution method. 
The turbulent viscosity ratio for the Velocity-inlet and the 
pressure outlet is set to 2, and the intensity for the Velocity-
inlet and the pressure outlet is 2%. The standard discretiza-
tion scheme is applied for pressure. As for the turbulence 
kinetic energy, turbulence dissipation rate, and momentum, 
the second order upwind scheme is adopted. Under-relaxa-
tion factors are set to default values.

Through the above CFD modeling process, the fluid 
resistance of the underwater robot can be obtained. When 
the input variables change, this CFD simulation process 
will output corresponding fluid resistance of the underwater 
robot. A more detailed description of the numerical process 
of the design problem can be found in Chen et al. (2021). 
For the shape design problem, the Latin hypercube sampling 
technique is employed to generate the training set, and ran-
dom sampling is used to generate prediction points. Due 
to the extensive computational cost of the CFD numerical 
simulation, only 100 prediction points are utilized to test the 
performance of various ensembles of surrogates.

4.3  The four variable I‑beam design problem

The four variable I-beam design problem shown in Fig. 6 is 
chosen from Chen et al. (2019). And the output response for 
the I-beam design problem is the vertical deflection of the 
four variable I-beam, which is calculated from:

where b and h represent the width and the height of the 
I-beam, and tw , tf  indicate two thicknesses of this problem. 
And f is the vertical deflection of the four variable I-beam. 
The range of the four input variables of the I-beam problem 
is shown in Table 4. The surrogate models are employed to 
approximate the relationship between the output response 
and the input variables of the I-beam design problem, so the 
constraint of the I-beam design problem is not considered 
in this work.

4.4  Performance metrics

In this section, root mean square error (RMSE) and mean 
absolute percentage error (MAPE) are employed as two 
accuracy indexes to evaluate the prediction accuracy of 
different ensembles of surrogates. The mathematical for-
mulations of RMSE and MAPE are shown in Eq.(38) and 
Eq.(39), respectively.

where Ŷi and Yi represent the predicted response and the true 
response at the ith prediction point, respectively. Pt indicates 

(37)f (b, h, tw, tf ) =
5000

tw(h−2tf )
3

12
+

bt3
f

6
+ 2btf (

h−tf

2
)
2

(38)RMSE =

√√√√ 1

Pt

Pt∑
i=1

(Ŷi − Yi)
2

(39)MAPE =
100%

Pt

Pt∑
i=1

|||||
Ŷi − Yi

Yi

|||||

Velocity inlet

Wall

Pressure outlet

x

x

y

z

Fig. 5  Computational domain of the underwater robot

b

wt
ft

h

Fig. 6  The four variable I-beam design problem

Table 4  Design variables of 
the four variable I-beam design 
problem

Design variable Range (in)

x1 (b) [10, 50]
x2 (h) [10, 99]
x3 (tw) [0.9, 5]
x4 (tf ) [0.9, 5]
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the number of prediction points. The smaller the value of 
RMSE and MAPE, the higher the prediction accuracy of 
the surrogate model.

4.5  Performance comparison based on analytical 
test functions

The number of training points for constructing each sur-
rogate model depends on the number of input variables. To 
investigate the effect of the sample size on the prediction 
accuracy of different ensembles of surrogates, the number 
of training points for each analytical test function is set to 
5n, 10n, 20n and 30n, respectively. n represents the dimen-
sion of each test function. To give a fair comparison, the 
Wilcoxon rank-sum test is employed to compare the RMSE 
results obtained by PEAH and other surrogate models at a 
significance level of 0.05. Based on the surrogate model that 
provides the most accurate prediction accuracy on each test 
function, the average RMSE value and the average MAPE 
value of different surrogate models on the analytical test 
functions are normalized. The closer the value of the accu-
racy metric is to 1, the higher the accuracy of the surrogate 
model. The normalized average RMSE results for those test 
functions are listed in Tables 5, 6, 7, and 8, in which the “ +/=
/−” indicates that the proposed PEAH is better than, similar 
to or worse than its corresponding competitor respectively 
according to the Wilcoxon rank-sum test result on the test 
function. When the Wilcoxon rank-sum test results show that 
the two groups of data are significantly different, the group 
with the lower median is better. The Wilcoxon rank-sum test 
results on the twenty test functions are denoted by “w/t/l”, 
which means that compared to the competitor, PEAH wins 
on w test functions, ties on t test functions and loses on l test 
functions, it can reflect the robustness of PEAH. To further 
compare the impact of the dimension of test functions on 
the prediction accuracy of different ensembles of surrogates, 
these test functions are divided into two groups, low-dimen-
sional (From F1 to F11) and high-dimensional (From F12 to 
F20). In the cases of selecting different numbers of training 
points, the normalized average MAPE values of each ensem-
ble of surrogates on the low-dimensional test functions and 
high-dimensional test functions are shown in Fig. 7.

As for the case with a small number of training points 
(5n), the statistical results listed in Table 5 indicate that 
PEAH shows a similar prediction accuracy to OWPE on 
low-dimensional test functions. Compared to the other six 
ensembles of surrogates, the Wilcoxon rank-sum test results 
on functions F12 to F20 (see Table 5) suggest that PEAH has 
superiority in the prediction accuracy on high-dimensional 
test functions. In addition, from Fig. 7 we can observe that 
PEAH and OWPE provide better prediction results than 
other five ensembles of surrogates on low-dimensional 
test functions in terms of the MAPE index, and EP shows 

the poorest prediction accuracy on high-dimensional test 
functions.

In the case with 5n training points, we can also observe 
that the RBF has the most accurate prediction ability on 
most of the test functions. Compared to the RBF, PEAH 
shows similar prediction accuracy on low-dimensional func-
tions. The statistical results listed in Table 5 suggest that in 
cases with a small number of training points, ensembles of 
surrogates are able to filter out the stand-alone surrogate 
models that provide poor prediction accuracy.

As shown in Table 6, the normalized average RMSE val-
ues of PEAH on the twenty test functions suggest that PEAH 
shows better prediction accuracy than other six ensembles of 
surrogates on both low-dimensional and high-dimensional 
test functions in the case with 10n training points. Using the 
adaptive function, PEAH can better characterize the local 
characteristics of the prediction point. Compared to the 
PBW, PEAH performs better than PBW on 16 test functions 
in terms of the Wilcoxon rank-sum test results on the twenty 
test functions (see the last row of Table 6), and the two 
ensembles of surrogates show similar prediction accuracy 
in the other four test functions. The statistical results listed 
in Table 6 indicate that PEAH shows better performance in 
prediction accuracy than SP1 on 19 test functions. From the 
normalized average MAPE results shown in Fig. 7, we can 
observe that PBW provides the poorest prediction results 
on the low-dimensional test problems, and the prediction 
accuracy of EP on the high-dimensional test functions in the 
case with 10n training points is poor. Compared with stand-
alone surrogate models, although PEAH only performs the 
best on two test functions (F11 and F12), the Wilcoxon rank-
sum test results on the twenty test functions suggest that 
the robustness of PEAH is better than the three stand-alone 
surrogate models in the case with 10n training points.

As for the case with 20n training points, the statisti-
cal results listed in Table 7 suggest that PEAH and EP 
show better performance in prediction accuracy on high-
dimensional test functions than other five ensembles of 
surrogates, and PEAH provides better prediction accuracy 
than EP on low-dimensional test functions. Compared to 
PBW, PEAH exhibits better prediction accuracy than PBW 
in 19 of the 20 test functions, which verifies the effective-
ness of PEAH. From Fig. 7, we can observe that PBW 
provides the poorest prediction results on the twenty test 
functions in the case with 20n training points. In contrast, 
PEAH provides better prediction results on high-dimen-
sional test functions than other six ensembles of surrogates 
(see Fig. 7). The Wilcoxon rank-sum test results shown 
in Table 7 indicate that the robustness of PEAH is bet-
ter than the three stand-alone surrogate models. Although 
PRS shows the best prediction accuracy on some low-
dimensional test functions (F3-F8), the performance of 
PRS on other test functions is not stable. It means that 
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the robustness of PRS on the twenty test functions in the 
case with 20n training points is unsatisfactory. In addi-
tion, among the nine high-dimensional test functions, the 
six best RMSE values are obtained by ensembles of sur-
rogates (see Table 7), indicating that ensembles of surro-
gates are able to show better prediction accuracy than the 

three stand-alone surrogate models on high-dimensional 
test functions.

The statistical results of the surrogate models for the 
normalized average RMSE in Table 8 suggest that PEAH 
shows better prediction accuracy than other six ensem-
bles of surrogates on low-dimensional test functions in 
the case with 30n training points, and OWPE provides 

Table 5  Normalized average 
RMSE values of different 
surrogate models on the test 
functions with 5n training 
points

Function PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

F1 1.0323 1.0027 1.0516 1.0464 1.2002 1.0007 1 1.1750 1.0702 1.3367
− = = + − − + = +

F2 1.0887 1.0746 1.0900 1.0870 1.2665 1.0679 1.0712 1.2293 1 1.4518
= = = + = = + − +

F3 1.0450 1.0473 1.0542 1.0609 1.1237 1.0630 1.0454 1 1.2695 1.0761
= = = + + = − + =

F4 1.0169 1.0746 1.0269 1.0598 1.0432 1.0918 1.0559 1 1.4013 1.0925
+ = + = + + = + =

F5 1.0301 1.0609 1.0427 1.0621 1.1045 1.0829 1.0488 1 1.3917 1.0961
+ = + + + + − + =

F6 1.0167 1.0093 1.0207 1.0171 1.1077 1.0153 1.0122 1 1.0868 1.0373
= = = + = = − + =

F7 1.0547 1.0397 1.0552 1.0612 1.0958 1.0732 1.0378 1.1695 1.2138 1
= = = + + = + + −

F8 1.0367 1.0681 1.0470 1.0644 1.0832 1.0823 1.0594 1 1.3187 1.0912
+ = = + + = − + =

F9 1.0405 1.0324 1.0584 1.0425 1.1833 1.0479 1.0344 1 1.2539 1.0316
= + = + + = − + −

F10 1.0458 1.0995 1.0547 1.1067 1.0724 1.1019 1.0565 1.2381 1 1.8224
+ = + + + + + − +

F11 1 1.0268 1.0117 1.0483 1.0304 1.0327 1.0062 1 1.0006 1.6001
+ = + + + = = = +

F12 1.0288 1.1559 1.0380 1.1663 1.0612 1.1820 1.0447 1.2134 1 4.0887
+ + + + + + + + +

F13 1.0360 1.0438 1.0457 1.0469 1.1174 1.0522 1.0437 1 1.1813 1.0869
= = = + + = − + =

F14 1.1184 1.1341 1.1254 1.2339 1.1399 1.1437 1.0945 1 1.1132 3.3136
+ = + + + + − + +

F15 1.0723 1.1215 1.0872 1.2179 1.1065 1.1411 1.0654 1 1.0870 3.7356
+ + + + + = − + +

F16 1.0787 1.1280 1.0953 1.2145 1.1347 1.1339 1.0668 1 1.0564 3.7768
+ + + + + + − + +

F17 1.0446 1.3879 1.0766 1.3516 1.0060 1.3629 1.1633 1 1.7545 6.5810
+ + + − + + − + +

F18 1.0316 1.2445 1.0534 1.2069 1 1.2338 1.1315 1.0162 1.7977 3.0264
+ + + − + + − + +

F19 1.0119 1.2144 1.0253 1.1466 1.7732 1.1787 1.0752 1 1.2692 4.1852
+ + + + + + − + +

F20 1.0238 1.2421 1.0352 1.2284 1.0167 1.2276 1.1058 1 1.4565 3.6957
+ + + − + + − + +

w∖t∖l 13∖6∖1 8∖12∖0 12∖8∖0 16∖1∖3 17∖2∖1 10∖9∖1 5∖2∖13 16∖2∖2 12∖6∖2
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similar prediction accuracy to PEAH on high-dimensional 
test functions. The normalized average MAPE on the 
twenty test functions shown in Fig. 7 indicate that PEAH 
and OWPE show better prediction results than other five 
ensembles of surrogates. From Tables 5, 6, 7, and 8 we can 
conclude that the PEAH can provide better performances 
in these test functions with a better balance between 
accuracy and robustness. In addition, it is worth noting 

that the prediction accuracy of the stand-alone surrogate 
model on the test functions changes with the number of 
training points. As for the case with 5n training points, 
RBF performs better than Kriging and PRS. However, the 
prediction accuracy of PRS improved with the number of 
training points, and PRS provides better prediction results 
than RBF and Kriging in the cases with 10n, 20n and 30n 
training points.

Table 6  Normalized average 
RMSE values of different 
surrogate models on the test 
functions with 10n training 
points

Function PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

F1 1.0245 1.0442 1.0552 1.1148 1.0877 1.0760 1.0181 1 2.6141 1.3836
+ + + + + = − + +

F2 1.0614 1.0401 1.0701 1.0486 1.1686 1 1.0483 1.0440 1.3337 1.6299
= = = + − = = + +

F3 1.0280 1.1481 1.0508 1.2792 1.1009 1.2960 1.0417 1.1182 4.5538 1
+ + + + + + + + −

F4 1.0612 1.1231 1.0396 1.1905 1.0658 1.2428 1.0306 1.0934 5.0248 1
+ − + − + − + + −

F5 1.0009 1.1131 1.0190 1.2149 1.0651 1.2537 1 1.1013 5.5675 1.0016
+ + + + + = + + =

F6 1.0377 1.0704 1.0584 1.0965 1.1314 1.1145 1.0388 1.0480 1.9503 1
+ + + + + + + + −

F7 1.0606 1.1206 1.0893 1.1636 1.1121 1.1981 1.0729 1.1701 2.2247 1
+ + + + + + + + −

F8 1.0453 1.1424 1.0536 1.2111 1.0887 1.2619 1.0601 1.1292 3.5975 1
+ = + + + + + + −

F9 1.0521 1.0395 1.1052 1.0885 1.1923 1.0537 1.0386 1 1.4631 1.1920
= + + + = = − + +

F10 1.0146 1.0669 1.0241 1.0671 1.0424 1.0633 1.0434 1.3761 1 1.6032
+ = + + + + + − +

F11 1 1.0304 1.0093 1.0218 1.0014 1.0269 1.0214 1.0102 1.0867 1.2388
+ + + = + + + + +

F12 1 1.0634 1.0152 1.0348 1.0210 1.0586 1.0438 1.2674 1.0107 1.3972
+ + + + + + + + +

F13 1.0593 1.1617 1.0793 1.2029 1.1385 1.2732 1.0788 1.1490 3.0088 1
+ = + + + + + + −

F14 1.0146 1.0163 1.0211 1.0236 1.0266 1.0189 1.0164 1 1.1420 1.1593
= + + + + = − + +

F15 1.0138 1.0166 1.0219 1.0259 1.0293 1.0185 1.0161 1 1.0934 1.1637
= + + + + = − + +

F16 1.0126 1.0178 1.0206 1.0257 1.0328 1.0184 1.0162 1 1.0672 1.1768
+ + + + + + − + +

F17 1.0158 1.1047 1.0279 1.0855 1 1.1038 1.0565 1.0394 2.0402 1.2327
+ + + − + + + + +

F18 1.0090 1.0986 1.0191 1.0680 1 1.0912 1.0459 1.0332 2.1281 1.4310
+ = + − + + + + +

F19 1.0102 1.1153 1.0292 1.0852 1.1593 1.1018 1.0810 1 1.3677 1.7710
+ + + + + + − + +

F20 1.0139 1.1189 1.0326 1.1104 1.0125 1.1132 1.0814 1 1.6903 1.6332
+ + + = + + − + +

w∖t∖l 16∖4∖0 14∖5∖1 19∖1∖0 15∖2∖3 18∖1∖1 13∖6∖1 12∖1∖7 19∖0∖1 13∖1∖6
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4.6  Performance comparison based on the shape 
design problem

To investigate the effect of the number of training points 
on the prediction accuracy of different surrogate models. 
The number of training points for the shape design prob-
lem in this section is set to 5n, 10n, 20n, 30n, respectively. 
The simulation results of different surrogate models on the 

shape design problem of the underwater robot are shown in 
Table 9, Table 10 and Fig. 8. The data in bold in Tables 9, 
10 represent the smallest RMSE and MAPE values in each 
group, respectively.

From Fig. 8(a) we can observe that the prediction accu-
racy of different ensembles of surrogates on the engineer-
ing problem increases with the number of training points 
in terms of the RMSE values. As listed in Table 9, PEAH 

Table 7  Normalized average 
RMSE values of different 
surrogate models on the test 
functions with 20n training 
points

Function PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

F1 1 1.3782 1.0231 1.9016 1.0484 1.7077 1.0546 1.0023 17.2037 1.8665
+ = + + + + = + +

F2 1.0873 1.0992 1.0764 1.0701 1.0261 1 1.0577 1.0730 1.7993 2.4348
+ = − − − = = + +

F3 1.0097 1.4817 1.0493 2.6700 1.0645 1.9718 1.0209 1.1974 44.4172 1
+ + + + + + + + −

F4 1.0465 1.4707 1.0430 2.0318 1.0330 1.6054 1.0137 1.1175 55.2022 1
+ = + − + − + + −

F5 1.0200 1.5515 1.0506 2.6019 1.0423 1.7370 1.0171 1.2605 58.6370 1
+ + + + + + + + −

F6 1.0161 1.2359 1.0454 1.6871 1.1024 1.6180 1.0171 1.1232 11.8035 1
+ + + + + = + + −

F7 1.0386 1.2964 1.0709 1.8301 1.0934 1.7165 1.0488 1.2082 14.3674 1
+ + + + + + + + −

F8 1.0250 1.4444 1.0398 2.2284 1.0482 1.9445 1.0523 1.2393 35.4572 1
+ + + + + + + + −

F9 1 1.1234 1.0315 1.0617 1.0928 1.0552 1.0564 1.3280 1.0145 2.4236
+ + + + + + + = +

F10 1.0310 1.0919 1.0090 1.0792 1 1.0817 1.0587 1.4053 1.0002 2.1119
+ − + − + + + − +

F11 1.0035 1.0462 1.0073 1.0228 1 1.0393 1.0287 1.0073 1.3919 1.2882
+ = + − + + = + +

F12 1 1.0481 1.0115 1.0283 1.0117 1.0413 1.0349 1.2710 1.0068 1.3924
+ + + + + + + = +

F13 1.0461 1.3962 1.0784 1.9307 1.0918 1.9472 1.0622 1.3488 22.1010 1
+ + + + + + + + −

F14 1.0024 1.0095 1.0017 1.0057 1 1.0147 1.0067 1.0133 1.1552 1.0034
+ = + − + + + + =

F15 1.0090 1.0145 1.0113 1.0082 1.0050 1.0197 1.0121 1.0273 1.1512 1
+ = = − + + + + −

F16 1 1.0022 1.0062 1.0019 1.0068 1.0051 1.0013 1.0043 1.1072 1.0239
= + = + + = + + +

F17 1.0119 1.1252 1.0238 1.1171 1 1.1314 1.0534 1.0662 2.2731 1.0393
+ + + − + + + + +

F18 1.0081 1.1201 1.0106 1.0967 1 1.1164 1.0399 1.1210 2.4780 1.0255
+ = + − + + + + +

F19 1.0151 1.0615 1.0251 1.0542 1.0737 1.0600 1.0508 1 1.3926 1.1810
+ + + + + + − + +

F20 1 1.0335 1.0018 1.0356 1.0042 1.0302 1.0094 1.0142 1.7408 1.0595
+ = + + + + + + +

w∖t∖l 19∖1∖0 11∖8∖1 17∖2∖1 12∖0∖8 19∖0∖1 16∖3∖1 16∖3∖1 17∖2∖1 11∖1∖8
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shows the best prediction accuracy on the shape design prob-
lem in the cases with different numbers of training points 
(5n, 10n, 20n and 30n). And in the case with 10n train-
ing points, PEAH, OWPE and EP show the same predic-
tion accuracy. As for the MAPE values shown in Fig. 8(b), 
with the increase of training point numbers from 5n to 10n, 
the MAPE values of ensembles of surrogates on the shape 
design problem drops significantly. When the number of 

training points increases from 10n to 20n, the MAPE values 
of these surrogate models has a small drop except EP. From 
the MAPE values of surrogate models on the shape design 
problem listed in Table 10, we can observe that OWPE 
provides the smallest value of MAPE in the case with 5n 
training points and EP shows better prediction results than 
other surrogate models in the case with 10n training points. 
PEAH provides the best MAPE values in the cases with 

Table 8  Normalized average 
RMSE values of different 
surrogate models on the test 
functions with 30n training 
points

Function PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

F1 1 1.7837 1.0221 4.2996 1.0394 2.2998 1.0255 1.0015 48.1104 2.1367
+ = + + + + = + +

F2 1.1785 1.2005 1.0778 1.0623 1.0796 1 1.0669 1.1493 1.3307 4.1996
+ − − = − = + + +

F3 1.0088 1.8453 1.0763 5.8468 1.0446 2.4861 1.0215 1.2720 100.2829 1
+ + + + + + + + −

F4 1.0583 2.1283 1.0678 4.6013 1.0283 1.6739 1.0156 1.1456 142.8551 1
+ + + − + − + + −

F5 1.0232 2.3857 1.0640 6.2160 1.0351 2.1265 1.0275 1.4039 160.4234 1
+ + + + + + + + −

F6 1.0050 1.4016 1.0505 2.9192 1.0901 2.0648 1 1.1414 28.6835 1.0019
+ + + + + = + + =

F7 1.0404 1.5256 1.0863 3.5653 1.0838 2.5608 1.0487 1.2756 41.5158 1
+ + + + + + + + −

F8 1.0169 1.8036 1.0454 4.3747 1.0288 2.5454 1.0463 1.2764 88.7846 1
+ + + + + + + + −

F9 1.0371 2.4632 1.0246 1.5918 1.0890 1.9490 1.1359 7.4456 1 20.1925
+ = + + + + + = +

F10 1.1221 1.1264 1.0685 1.1009 1 1.1033 1.1080 1.4219 1.0695 2.7520
= − − − − − + − +

F11 1.0147 1.1040 1.0151 1.0463 1 1.0907 1.0515 1.0179 2.1243 1.4443
+ = + − + + = + +

F12 1 1.0517 1.0053 1.0326 1.0107 1.0414 1.0355 1.2687 1.0025 1.5211
+ = + + + + + = +

F13 1.0350 1.7615 1.0829 3.9742 1.0728 2.7495 1.0489 1.4379 63.2121 1
+ + + + + + + + −

F14 1.0167 1.0323 1.0089 1.0230 1.0055 1.0384 1.0265 1.0434 1.2035 1
+ − + − + + + + −

F15 1.0267 1.0448 1.0157 1.0306 1.0089 1.0521 1.0376 1.0679 1.2417 1
+ − + − + + + + −

F16 1 1.0040 1.0044 1.0021 1.0007 1.0077 1.0021 1.0108 1.1285 1.0149
+ = + = + + + + +

F17 1.0096 1.1071 1.0210 1.1083 1 1.1156 1.0454 1.0464 2.1456 1.0369
+ + + − + + + + +

F18 1.0054 1.1102 1.0049 1.0942 1 1.1099 1.0298 1.1064 2.6547 1.0136
+ = + − + + + + +

F19 1.0129 1.0665 1.0276 1.0656 1.0862 1.0677 1.0505 1 1.4525 1.0836
+ + + + + + − + +

F20 1.0004 1.0454 1 1.0465 1.0008 1.0428 1.0124 1.0461 1.8815 1.0199
+ = + = + + + + +

w∖t∖l 19∖1∖0 9∖7∖4 18∖0∖2 10∖3∖7 18∖0∖2 16∖2∖2 17∖2∖1 17∖2∖1 11∖1∖8
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Fig. 7  Normalized average MAPE values of the ensembles of surrogate on test functions with different numbers of training points
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20n and 30n training points. In general, PEAH, OWPE and 
EP exhibit better prediction accuracy on the shape design 
problem than other ensembles of surrogates. In addition, it 
is worth noting that the prediction accuracy of PEAH on the 
shape design problem is better than its stand-alone surrogate 
models in all the cases.

4.7  Performance comparison based on the I‑beam 
design problem

The number of training points for the I-beam design prob-
lem with the explicit function is set to 5n, 10n, 20n, 30n, 
respectively. In order to eliminate the influence of random 
sampling, 1000 different training sets are generated for com-
parison. 1000 prediction points are generated by random 

sampling to test surrogate models constructed with the train-
ing set. The simulation results of different surrogate mod-
els on the I-beam design problem are shown in Table 11, 
Table 12, Fig. 9 and Fig. 10. The data in bold in Tables 11, 
12 represent the smallest average RMSE and MAPE values 
in each group, respectively.

The statistical results listed in Table 11 indicate that 
the prediction accuracy of different surrogate models on 
the I-beam design problem increases with the number of 
training points in terms of the RMSE values. As shown in 
Table 11 and Fig. 9, PEAH and RBF show the best predic-
tion accuracy on the I-beam design problem in the cases 
with 10n, 20n and 30n training points. The boxplot of dif-
ferent ensembles of surrogates on the I-beam design prob-
lem shown in Fig. 10 suggests that that PEAH has higher 
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prediction accuracy and stability of prediction than the 
other six ensembles of surrogates. As listed in Table 12, 
RBF and PEAH provide better MAPE results than other 
surrogate models. Compared to other ensembles of surro-
gates, the simulation results on the I-beam design problem 
with the explicit function indicate that the proposed PEAH 
is able to accurately track the stand-alone surrogate model 
that performs the best and filter out the stand-alone sur-
rogate models that show poor prediction accuracy.

4.8  Computational cost

The total running time of each ensemble of surrogates on the 
twenty test functions is shown in Fig. 11 and Table 13. The 
data in bold in Table 13 represent the smallest computational 
time in each group. The computational time of each ensem-
ble of surrogates is calculated using the MATLAB routine 
tic and toc. From Fig. 11 we can observe that with the num-
ber of training points, the computational costs of ensem-
bles of surrogates increase. PBW and OWSd have smaller 
computational costs than the other five ensembles of sur-
rogates. Since PEAH, OWPE and EP include optimization 
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problems in the construction process, these three ensem-
bles of surrogates are more computationally expensive than 
other ensemble models. As listed in Table 13, OWPE has the 
largest amount of calculations in all the cases with different 
numbers of training points. From Fig. 11 and Table 13 we 
can observe that as the training point number increases, the 
computational cost of PEAH is similar to EP. 

Table 9  RMSE values of surrogate models on the shape design problem with different numbers of training points

Number of
DOE

PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

5n 1.84E-01 1.99E-01 1.85E-01 2.01E-01 1.86E-01 2.05E-01 1.88E-01 2.24E-01 3.42E-01 2.04E-01
10n 1.74E-01 1.77E-01 1.74E-01 1.78E-01 1.74E-01 1.78E-01 1.75E-01 1.86E-01 2.12E-01 1.78E-01
20n 1.51E-01 1.58E-01 1.52E-01 1.54E-01 1.54E-01 1.60E-01 1.57E-01 1.70E-01 2.02E-01 1.52E-01
30n 1.27E-01 1.35E-01 1.27E-01 1.36E-01 1.31E-01 1.37E-01 1.31E-01 1.61E-01 2.31E-01 1.32E-01

Table 10  MAPE values of surrogate models on the shape design problem with different numbers of training points

Number of
DOE

PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

5n 9.93E-03 1.14E-02 9.90E-03 1.16E-02 1.04E-02 1.21E-02 1.02E-02 1.39E-02 2.08E-02 1.15E-02
10n 7.70E-03 8.38E-03 7.83E-03 8.46E-03 7.58E-03 8.53E-03 8.06E-03 9.33E-03 1.17E-02 7.87E-03
20n 7.56E-03 8.09E-03 7.60E-03 7.87E-03 7.90E-03 8.22E-03 7.97E-03 9.17E-03 1.16E-02 7.79E-03
30n 6.70E-03 7.20E-03 6.70E-03 7.10E-03 7.00E-03 7.00E-03 7.00E-03 8.40E-03 1.23E-02 7.00E-03

Table 11  Average RMSE values of surrogate models on the I-beam design problem with different numbers of training points

Number of
DOE

PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

5n 2.88E-01 3.39E-01 2.98E-01 3.21E-01 3.08E-01 3.26E-01 3.24E-01 2.87E-01 4.11E-01 5.20E-01
10n 2.03E-01 2.50E-01 2.12E-01 2.25E-01 2.14E-01 2.40E-01 2.36E-01 2.03E-01 3.59E-01 3.37E-01
20n 1.61E-01 2.02E-01 1.63E-01 1.75E-01 1.70E-01 1.91E-01 1.85E-01 1.61E-01 3.20E-01 2.98E-01
30n 1.49E-01 1.89E-01 1.50E-01 1.63E-01 1.55E-01 1.80E-01 1.71E-01 1.49E-01 3.03E-01 2.98E-01

Table 12  Average MAPE values of surrogate models on the I-beam design problem with different numbers of training points

Number of
DOE

PEAH PBW OWPE SP1 EP PEM-vCV OWSd RBF Kriging PRS

5n 1.14E+00 3.38E+00 1.34E+00 1.44E+00 2.16E+00 1.51E+00 2.60E+00 8.93E-01 3.25E+00 1.18E+01
10n 5.68E-01 2.43E+00 8.70E-01 8.95E-01 1.32E+00 9.67E-01 2.03E+00 5.44E-01 2.91E+00 6.81E+00
20n 3.77E-01 1.98E+00 5.18E-01 5.91E-01 8.60E-01 6.62E-01 1.52E+00 3.75E-01 2.85E+00 5.97E+00
30n 3.31E-01 1.78E+00 4.22E-01 4.81E-01 7.92E-01 5.51E-01 1.27E+00 3.31E-01 2.99E+00 5.62E+00

Table 13  Computational time (s) of ensembles of surrogates on the 
test functions with different numbers of training points

Ensemble 5n 10n 20n 30n

PEAH 4.565E+03 7.295E+03 2.661E+04 5.493E+04
PBW 4.121E+03 6.839E+03 2.613E+04 5.446E+04
OWPE 5.390E+03 8.981E+03 3.129E+04 6.337E+04
SP1 4.306E+03 7.037E+03 2.636E+04 5.469E+04
EP 4.382E+03 7.129E+03 2.656E+04 5.487E+04
PEM-vCV 4.276E+03 7.002E+03 2.632E+04 5.466E+04
OWSd 4.126E+03 6.844E+03 2.614E+04 5.447E+04
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5  Conclusion

Inspired by the heuristic formulation for the average ensem-
ble model, a pointwise ensemble of surrogates with adaptive 
function and heuristic formulation (PEAH) is proposed in 
this paper. The adaptive function proposed in this paper is 
the key to PEAH; it includes the local accuracy and uncer-
tainty prediction information of a prediction point. There-
fore, the adaptive function can adapt to local characteris-
tics of the prediction point. The effectiveness of PEAH is 
validated by twenty analytical test functions, a shape design 
problem that requires high-fidelity CFD simulations, and an 
I-beam design problem with the explicit function. We choose 
three typical stand-alone surrogate models and six well-
known ensembles of surrogates for comparison. In order 
to intuitively compare the merits and demerits of different 
ensembles of surrogates, a comparison table (see Table 14) 
is made based on the simulation results in this work. The 
test problems used in this paper are divided into three cat-
egories, including low-dimensional analytical test functions 
(From F1 to F11), high-dimensional analytical test functions 
(From F12 to F20) and engineering design problems (The 
CFD-based shape design problem and the I-beam design 
problem).

From the numerical results, the following findings can 
be drawn: 

1. In the case with the small number of training points 
(5n), compared to other ensembles of surrogates, PEAH 
and OWPE show superior prediction accuracy on low-
dimensional test functions, and PEAH has superiority 
in the prediction accuracy on high-dimensional test 
functions. As for stand-alone surrogate models, RBF 
provides the best performance on most of the analytical 
test functions, and the compared ensembles couldn’t out-
perform the RBF model. The reason is that for a given 
problem, the performance of some stand-alone surrogate 
models may be poor and differs significantly from the 
best model. This means that compared to the best sur-
rogate model, other single surrogate models may show 
poor prediction accuracy in the whole design space. In 
these cases, although the single surrogate model that 
performs the best has the largest weight in the ensemble, 
the performance of the constructed ensembles of surro-
gates will also be affected by other surrogate models that 
perform poorly. However, ensembles of surrogates can 
effectively filter out the stand-alone surrogate models 
that show poor prediction results.

2. With the increase of the number of training points (from 
5n to 30n), the Wilcoxon rank-sum test results on the test 
functions suggest that the robustness of PEAH is better 
than the three stand-alone surrogate models. This means 
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that the proposed PEAH model is able to provide stable 
prediction on different types of test problems.

3. Among the three stand-alone surrogate models, the sur-
rogate model with the highest prediction accuracy in the 
test functions varies with the increase of the number of 
training points. In the case with 5n training points, RBF 
performs better than Kriging and PRS. In contrast, the 
prediction accuracy of PRS improved significantly with 
the increase of the number of training points, and PRS 
exhibits better prediction accuracy than RBF and Krig-
ing in the cases with 10n, 20n and 30n training points. 
With the increase of the number of training points, the 
proposed PEAH model can also maintain stable high-
precision predictions on the same test problem. In addi-
tion, compared with stand-alone surrogate models, the 
proposed PEAH model has higher robustness in predic-
tion.

4. The construction processes of PEAH, OWPE and EP 
include optimization problems, so the computational 
costs of these three ensemble models are higher than 
the other four ensembles of surrogates. The computa-
tional cost of OWPE is the highest. With the increase of 
the number of training points, the computational cost of 
PEAH is similar to EP. In general, to obtain the output 
response for a practical engineering design problem, we 
need to conduct a high-fidelity numerical simulation 
procedure (such as the CFD method) to get the output 
response. This process is usually time-consuming, which 
means that the number of training points significantly 
impacts the amount of calculation in the construction 
of the surrogate models. However, the construction of 
ensembles of surrogates is based on the same training set 
and does not need extra training points. Thus compared 
with the impact of the number of training points on the 

computational cost, the computational cost of building 
an ensemble of surrogates will be smaller.

5. As for the shape design problem, PEAH, OWPE and 
EP show better prediction accuracy than the other four 
ensembles of surrogates. In addition, it is worth not-
ing that the prediction accuracy of PEAH on the shape 
design problem is always better than its stand-alone 
surrogate models in all the cases. Compared to other 
ensembles of surrogates, PEAH shows superiority in the 
prediction accuracy on the I-beam design problem with 
the explicit function.

The numerical experimental results indicate that PEAH 
performs better in these problems with a better balance 
between accuracy and robustness. In the future, to further 
investigate the performance of PEAH, more stand-alone 
surrogate models should be employed to construct PEAH. 
The proposed PEAH is expected to have a wide application 
in engineering design problems.

Appendix: Explicit functions of of PRS, RBF 
and Kriging

PRS

PRS model (Box et al. 1978) has been widely applied for 
estimating the output response in engineering systems. A 
second-order PRS model can be expressed as:

where ŷ and x represent the predicted response and the input 
variable vector, respectively. � indicates the coefficient vec-
tor of the PRS model and d refers to the dimension of the 
input variable vector.

RBF

RBF (Hardy 1971) has been developed for approximating 
the relationship between input variables and the output 
response. The RBF model utilizes combinations of a radially 
symmetric function based on Euclidean distance or other 
such metrics to approximate the response function (Jin et al. 
2001). The radial basis function can be expressed as:

where N refers to the number of training points in the train-
ing set. � is the the basis function and � is the coefficient 
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∑
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Fig. 11  Total time (s) consumed by the ensembles of surrogates on 
the test functions with different numbers of training points
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vector of the basis function. ‖‖x − x
(k)‖‖ represents the Euclid-

ean distance between the prediction point x and the kth train-
ing point x(k).

Kriging

The Kriging model (Sacks et al. 1989) postulates that the 
output response at a prediction point can be expressed as a 
linear combination of the output responses of the training 
points in the neighborhood of the prediction point. The Krig-
ing model can be expressed as:

where fk(x) is the output response at the kth training point. 
Z(x) is assumed to be the realization of a stochastic process 
with mean zero and spatial correlation function (Jin et al. 
2001), given by:

where �2 indicates the process variance, and R(xi, xj) refers 
to the correlation function.
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